Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-17T20:26:33.779Z Has data issue: false hasContentIssue false

Morphological characterization of Cryptosporidium parvum life-cycle stages in an in vitro model system

Published online by Cambridge University Press:  20 August 2009

H. BOROWSKI
Affiliation:
WHO Collaborating Centre for the Molecular Epidemiology of Parasitic Infections, Veterinary and Biomedical Sciences, Murdoch University, South Street, Murdoch, WA 6150, Australia
R. C. A. THOMPSON*
Affiliation:
WHO Collaborating Centre for the Molecular Epidemiology of Parasitic Infections, Veterinary and Biomedical Sciences, Murdoch University, South Street, Murdoch, WA 6150, Australia
T. ARMSTRONG
Affiliation:
WHO Collaborating Centre for the Molecular Epidemiology of Parasitic Infections, Veterinary and Biomedical Sciences, Murdoch University, South Street, Murdoch, WA 6150, Australia
P. L. CLODE
Affiliation:
Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
*
*Corresponding author: WHO Collaborating Centre for the Molecular Epidemiology of Parasitic Infections, Veterinary and Biomedical Sciences, Murdoch University, South Street, Murdoch, WA 6150, Australia. Tel: +(08) 9360 2466. Fax: +(08) 9360 6285. E-mail: a.thompson@murdoch.edu.au

Summary

Cryptosporidium parvum is a zoonotic protozoan parasite that mainly affects the ileum of humans and livestock, with the potential to cause severe enteric disease. We describe the complete life cycle of C. parvum in an in vitro system. Infected cultures of the human ileocecal epithelial cell line (HCT-8) were observed over time using electron microscopy. Additional data are presented on the morphology, development and behavioural characteristics of the different life-cycle stages as well as determining their time of occurrence after inoculation. Numerous stages of C. parvum and their behaviour have been visualized and morphologically characterized for the first time using scanning electron microscopy. Further, parasite-host interactions and the effect of C. parvum on host cells were also visualized. An improved understanding of the parasite's biology, proliferation and interactions with host cells will aid in the development of treatments for the disease.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barnes, D. A., Bonnin, A., Huang, J. X., Gousset, L., Wu, J., Gut, J., Doyle, P., Dubremetz, J. F., Ward, H. and Petersen, C. (1998). A novel multi-domain mucin-like glycoprotein of Cryptosporidium parvum mediates invasion. Molecular and Biochemical Parasitology 96, 93–110.CrossRefGoogle ScholarPubMed
Barta, J. R. and Thompson, R. C. A. (2006). What is Cryptosporidium? Reappraising its biology and phylogenetic affinities. Trends in Parasitology 22, 463468.CrossRefGoogle ScholarPubMed
Bonnin, A., Gut, J., Dubremetz, J. F., Nelson, R. G. and Camerlynck, P. (1995). Monoclonal antibodies identify a subset of dense granules in Cryptosporidium parvum zoites and gamonts. The Journal of Eukaryotic Microbiology 42, 395401.CrossRefGoogle ScholarPubMed
Borowski, H., Clode, P. L. and Thompson, R. C. A. (2008). Active invasion and/or encapsulation? A reappraisal of host-cell parasitism by Cryptosporidium. Trends in Parasitology 24, 509516.CrossRefGoogle ScholarPubMed
Butaeva, F., Paskerova, G. and Entzeroth, R. (2006). Ditrypanocystis sp. (Apicomplexa, Gregarinia, Selenidiidae): the mode of survival in the gut of Enchytraeus albidus (Annelida, Oligochaeta, Enchytraeidae) is close to that of the coccidian genus Cryptosporidium. Tsitologiia 48, 695704.Google ScholarPubMed
Carreno, R. A., Martin, D. S. and Barta, J. R. (1999). Cryptosporidium is more closely related to the gregarines than to coccidia as shown by phylogenetic analysis of apicomplexan parasites inferred using small-subunit ribosomal RNA gene sequences. Parasitology Research 85, 899904.CrossRefGoogle Scholar
Chen, X. M., Huang, B. Q., Splinter, P. L., Orth, J. D., Billadeau, D. D., McNiven, M. A. and LaRusso, N. F. (2004 a). Cdc42 and the actin-related protein/neural Wiskott-Aldrich syndrome protein network mediate cellular invasion by Cryptosporidium parvum. Infection and Immunity 72, 30113021.CrossRefGoogle ScholarPubMed
Chen, X. M. and LaRusso, N. F. (2000). Mechanisms of attachment and internalization of Cryptosporidium parvum to biliary and intestinal epithelial cells. Gastroenterology 118, 368379.CrossRefGoogle ScholarPubMed
Chen, X. M., O'Hara, S. P., Huang, B. Q., Splinter, P. L., Nelson, J. B. and LaRusso, N. F. (2005). Localized glucose and water influx facilitates Cryptosporidium parvum cellular invasion by means of modulation of host-cell membrane protrusion. Proceedings of the National Academy of Sciences, USA 102, 63386343.CrossRefGoogle ScholarPubMed
Chen, X. M., Splinter, P. L., Tietz, P. S., Huang, B. Q., Billadeau, D. D. and LaRusso, N. F. (2004 b). Phosphatidylinositol 3-kinase and frabin mediate Cryptosporidium parvum cellular invasion via activation of Cdc42. The Journal of Biological Chemistry 279, 3167131678.CrossRefGoogle ScholarPubMed
Elliott, D. A. and Clark, D. P. (2000). Cryptosporidium parvum induces host cell actin accumulation at the host-parasite interface. Infection and Immunity 68, 23152322.CrossRefGoogle ScholarPubMed
Fayer, R., Speer, C. A. and Dubey, J. P. (1997). The general biology of Cryptosporidium. In Cryptosporidium and Cryptosporidiosis (ed. Fayer, R.), pp. 141. CRC Press LLC, New York, USA.Google Scholar
Forney, J. R., DeWald, D. B., Yang, S., Speer, C. A. and Healey, M. C. (1999). A role for host phosphoinositide 3-kinase and cytoskeletal remodeling during Cryptosporidium parvum infection. Infection and Immunity 67, 844852.CrossRefGoogle ScholarPubMed
Hashim, A., Mulcahy, G., Bourke, B. and Clyne, M. (2006). Interaction of Cryptosporidium hominis and Cryptosporidium parvum with primary human and bovine intestinal cells. Infection and Immunity 74, 99–107.CrossRefGoogle ScholarPubMed
Hijjawi, N. S., Meloni, B. P., Morgan, U. M. and Thompson, R. C. A. (2001). Complete development and long-term maintenance of Cryptosporidium parvum human and cattle genotypes in cell culture. International Journal for Parasitology 31, 10481055.CrossRefGoogle ScholarPubMed
Hijjawi, N. S., Meloni, B. P., Ryan, U. M., Olson, M. E. and Thompson, R. C. A. (2002). Successful in vitro cultivation of Cryptosporidium andersoni: evidence for the existence of novel extracellular stages in the life cycle and implications for the classification of Cryptosporidium. International Journal for Parasitology 32, 17191726.CrossRefGoogle ScholarPubMed
Hijjawi, N. S., Meloni, B. P., Ng'anzo, M., Ryan, U. M., Olson, M. E., Cox, P. T., Monis, P. T. and Thompson, R. C. A. (2004). Complete development of Cryptosporidium parvum in host cell-free culture. International Journal for Parasitology 34, 769777.CrossRefGoogle ScholarPubMed
Huang, B. Q., Chen, X. M. and LaRusso, N. F. (2004). Cryptosporidium parvum attachment to and internalization by human biliary epithelia in vitro: a morphologic study. The Journal of Parasitology 90, 212221.CrossRefGoogle ScholarPubMed
Kuznar, Z. A. and Elimelech, M. (2006). Cryptosporidium oocyst surface macromolecules significantly hinder oocyst attachment. Environmental Science and Technology 40, 18371842.CrossRefGoogle ScholarPubMed
Lacombe, D., Jakowska, S. and Silva, E. (2002). Gregarine Cephaloidophora communis mawrodiadi, 1908 in the barnacle Euraphia rhyzophorae, Oliveira, 1940 from Brazil. Memórias do Instituto Oswaldo Cruz 97, 10571061.CrossRefGoogle ScholarPubMed
Landers, S. C. (2001). Pterospora floridiensis, a new species of acephaline gregarine (Apicomplexa) from the maldanid polychaete Axiothella mucosa in St. Andrew Bay, Florida. Systematic Parasitology 48, 5559.CrossRefGoogle Scholar
Levine, N. D. (1988) The Protozoan Phylum Apicomplexa, Vols 1 and 2. CRC, Boca Raton, FL, USA.Google Scholar
Meloni, B. P. and Thompson, R. C. A. (1996). Simplified methods for obtaining purified oocysts from mice and for growing Cryptosporidium parvum in vitro. The Journal of Parasitology 82, 757762.Google Scholar
O'Donoghue, P. J. (1995). Cryptosporidium and cryptosporidiosis in man and animals. International Journal for Parasitology 25, 139195.CrossRefGoogle Scholar
Perkins, M. E., Riojas, Y. A., Wu, T. W. and Le Blancq, S. M. (1999). CpABC, a Cryptosporidium parvum ATP-binding cassette protein at the host-parasite boundary in intracellular stages. Proceedings of the National Academy of Sciences, USA 96, 57345739.CrossRefGoogle ScholarPubMed
Pollok, R. C., McDonald, V., Kelly, P. and Farthing, M. J. (2003). The role of Cryptosporidium parvum-derived phospholipase in intestinal epithelial cell invasion. Parasitology Research 90, 181186.CrossRefGoogle ScholarPubMed
Riggs, M. W., McNeil, M. R., Perryman, L. E., Stone, A. L., Scherman, M. S. and O'Connor, R. M. (1999). Cryptosporidium parvum sporozoite pellicle antigen recognized by a neutralizing monoclonal antibody is a beta-mannosylated glycolipid. Infection and Immunity 67, 13171322.CrossRefGoogle ScholarPubMed
Smith, H. V., Nichols, R. A. and Grimason, A. M. (2005). Cryptosporidium excystation and invasion: getting to the guts of the matter. Trends in Parasitology 21, 133142.CrossRefGoogle Scholar
Snelling, W. J., Lin, Q., Moore, J. E., Millar, B. C., Tosini, F., Pozio, E., Dooley, J. S. and Lowery, C. J. (2007). Proteomics analysis and protein expression during sporozoite excystation of Cryptosporidium parvum (Coccidia, Apicomplexa). Molecular and Cellular Proteomics: MCP 6, 346355.CrossRefGoogle ScholarPubMed
Tetley, L., Brown, S. M., McDonald, V. and Coombs, G. H. (1998). Ultrastructural analysis of the sporozoite of Cryptosporidium parvum. Microbiology 144, 32493255.CrossRefGoogle ScholarPubMed
Thompson, R. C. A., Olson, M. E., Zhu, G., Enomoto, S., Abrahamsen, M. S. and Hijjawi, N. S. (2005). Cryptosporidium and cryptosporidiosis. Advances in Parasitology 59, 77–158.CrossRefGoogle ScholarPubMed
Toso, M. A. and Omoto, C. K. (2007). Ultrastructure of the Gregarina niphandrodes nucleus through stages from unassociated trophozoites to gamonts in syzygy and the syzygy junction. The Journal of Parasitology 93, 479484.CrossRefGoogle ScholarPubMed
Valigurova, A., Hofmannova, L., Koudela, B. and Vavra, J. (2007). An ultrastructural comparison of the attachment sites between Gregarina steini and Cryptosporidium muris. The Journal of Eukaryotic Microbiology 54, 495510.CrossRefGoogle ScholarPubMed
Valigurova, A., Jirku, M., Koudela, B., Gelnar, M., Modry, D. and Slapeta, J. (2008). Cryptosporidia: epicellular parasites embraced by the host cell membrane. International Journal for Parasitology 38, 913922.CrossRefGoogle ScholarPubMed
Wetzel, D. M., Schmidt, J., Kuhlenschmidt, M. S., Dubey, J. P. and Sibley, L. D. (2005). Gliding motility leads to active cellular invasion by Cryptosporidium parvum sporozoites. Infection and Immunity 73, 53795387.CrossRefGoogle ScholarPubMed