Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-18T13:39:26.343Z Has data issue: false hasContentIssue false

High yield fusion in a staged Z-pinch

Published online by Cambridge University Press:  22 April 2009

H. U. RAHMAN
Affiliation:
Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA
F. J. WESSEL
Affiliation:
Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA
N. ROSTOKER
Affiliation:
Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA
P. H. NEY
Affiliation:
Mount San Jacinto College, Menifee, CA 92584, USA (pney@msjc.edu)

Abstract

We simulate fusion in a Z-pinch, where the load is a xenon-plasma liner imploding onto a deuterium–tritium (DT) plasma target and the driver is a 2 MJ, 17 MA, 95 ns risetime pulser. The implosion system is modeled using the dynamic, 2D, radiation-magnetohydrodynamic code, MACH2. During implosion a shock forms in the Xe liner, transporting current and energy radially inward. After collision with the DT, a secondary shock forms pre-heating the DT to several hundred electronvolts. Adiabatic compression leads subsequently to a fusion burn, as the target is surrounded by a flux-compressed, intense, azimuthal-magnetic field. The intense-magnetic field confines fusion α-particles, providing an additional source of ion heating that leads to target ignition. The target remains stable up to the time of ignition. Predictions are for a neutron yield of 3.0 × 1019 and a thermonuclear energy of 84 MJ, that is, 42 times greater than the initial, capacitor-stored energy.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appartaim, R. K. and Dangor, A. E. 1998 Large magnetic fields generated by z-pinch flux compression. J. Appl. Phys. 84 (8), 41704175.CrossRefGoogle Scholar
Bailey, J., Fisher, A. and Rostoker, N. 1986 Coupling of radiation and hydrodynamics in a z pinch plasma. J. Appl. Phys. 60, 1939.CrossRefGoogle Scholar
Chaikovsky, S. A. and Sorokin, S. A. 1997 Density, temperature, and size of a plasma produced in a single and double shell liner implosion. The Fourth International Conference on High Density Z-Pinches, Vol. 409. New York: American Institute of Physics.Google Scholar
Chang, T. F., Fisher, A. and Van Drie, A. 1991 X-ray results from a modified nozzle and double gas puff z pinch. J. Appl. Phys. 69, 3447.CrossRefGoogle Scholar
Chittenden, J. P., Ciardi, A., Jennings, C. A., Lebedev, S. V., Hammer, D. A., Pikuz, S. A. and Shelkovenko, T. A. 2007 Structural evolution and formation of high-pressure plasmas in x pinches. Phys. Rev. Lett. 98 (2).CrossRefGoogle ScholarPubMed
Coverdale, C. A. et al. 2007 Neutron production and implosion characteristics of a deuterium gas-puff z pinch. Phys. Plasmas 14 (2), 022706.CrossRefGoogle Scholar
Coverdale, C. A., Deeney, C., Velikovich, A. L., Davis, J., Clark, R. W., Chong, Y. K., Chittenden, J., Chantrenne, S., Ruiz, C. L. and Cooper, G. W. 2007 Deuterium gas-puff z-pinch implosions on the z accelerator. Phys. Plasmas 14 (5).Google Scholar
DeGroot, J. S., Deeney, C., Sanford, T. W. L., Spielman, R. B., Estabrook, K. G., Hammer, J. H., Ryutov, D. and Toor, A. 1997 High velocity implosions on pbfa z. The Fourth International Conference on High Density Z-Pinches, Vol. 409. New York: American Institute of Physics.Google Scholar
DeGroot, J. S., Toor, A., Goldberg, S. M. and Liberman, M. A. 1997 Growth of the Rayleigh–Taylor instability in an imploding z-pinch. Phys. Plasmas 4 (3), 737747.CrossRefGoogle Scholar
Failor, B. H., Sze, H., Banister, J., Levine, J. S., Qi, N., Apruzese, J. P. and Lojewski, D. Y. 2007 Magnetic Rayleigh–Taylor instability mitigation in large-diameter gas puff z-pinch implosions. Phys. Plasmas 15 (2), 022703022900.CrossRefGoogle Scholar
Felber, F. S. 1982 Self-similar oscillations of a z pinch. Phys. Fluids 25 (4), 643.CrossRefGoogle Scholar
Glazyrin, I. V., Diyankov, O. V., Karlykhanov, N. G. and Koshelev, S. V. Numerical analysis of mhd instability suppression in a double gas puff. The Fourth International Conference on High Density Z-Pinches, Vol. 409. New York: American Institute of Physics.Google Scholar
Haines, M. G., Lebedev, S. V., Chittenden, J. P., Beg, F. N., Bland, S. N. and Dangor, A. E. 2000 The past, present, and future of z pinches. Phys. Plasmas 7 (2), 16721680.CrossRefGoogle Scholar
Levine, J. S., Banister, J. W., Failor, B. H., Qi, N., Sze, H. M., Velikovich, A. L., Commisso, R. J., Davis, J. and Lojewski, D. 2006 Implosion dynamics and radiative characteristics of a high yield structured gas puff load. Phys. Plasmas 13, 082702–1.CrossRefGoogle Scholar
Matzen, M. K. 1997 Z pinches as intense x-ray sources for high-energy density physics applications. Phys. Plasmas 4 (5), 15191527.CrossRefGoogle Scholar
Ney, P., Rahman, H. U., Rostoker, N. and Wessel, F. J. 2001 Staged z-pinch for controlled fusion. Phys. Plasmas 8, 616.CrossRefGoogle Scholar
Peterkin, R. E., Frese, M. H. and Sovinec, C. R. 1998 Transport of magnetic flux in an arbitrary coordinate ale code. J. Comput. Physics 140 (1), 148171.CrossRefGoogle Scholar
Qi, N., Sze, H., Failor, B. H., Banister, J., Levine, J. S., Riorden, J. C., Steen, P., Sincerney, P. and Lojewski, D. 2008 Magnetic Rayleigh–Taylor instability mitigation in large-diameter gas puff z-pinch implosions. Phys. Plasmas 15 (2), 022703-1–022703-9.CrossRefGoogle Scholar
Rahman, H. U., Ney, P., Wessel, F. J., Fisher, A. and Rostoker, N. 1989 Thermonuclear fusion by a z-θ pinch. Dense Z-Pinches, Vol. 195. New York: American Institute of Physics.Google Scholar
Rahman, H. U., Wessel, F. J. and Rostoker, N. 1995 Staged z-pinch. Phys. Rev. Lett. 74, 714.CrossRefGoogle ScholarPubMed
Rahman, H. U., Ney, P., Van Drie, A., Rostoker, N. and Wessel, F. J. 2004 Control of the Rayleigh-Taylor Instability in a Staged Z-pinch. Phys. Plasmas 11, 5595.CrossRefGoogle Scholar
Rostoker, N. and Tahsiri, H. 1978 Rayleigh Taylor Instability for Impulsively Accelerated Shells; A perspective of Physics (ed. Peierls, Sir Rudolph). New York: Gordon and Breech.Google Scholar
Ryutov, D. D., Derzon, M. S. and Matzen, M. K. 2000 The physics of fast z pinches. Rev. Mod. Phys. 72, 167224.CrossRefGoogle Scholar
Shiloh, J., Fisher, A. and Rostoker, N. 1978 Z pinch of a gas jet. Phys. Rev. Lett. 40, 515.CrossRefGoogle Scholar
Velikovich, A. L., Cochran, F. L. and Davis, J.Suppression of Rayleigh–Taylor instability in z-pinch loads with tailored density profiles. Phys. Rev. Lett. 77 (5), 853856.CrossRefGoogle Scholar
Yu, E. P. et al. 2008 Three-dimensional effects in trailing mass in the wire-array z pinch. Phys. Plasmas 15, 056301-1–056301-9.CrossRefGoogle Scholar