Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T20:24:54.045Z Has data issue: false hasContentIssue false

Microbiological and chemical changes in the rumen during the stepwise adaptation of sheep to high concentrate diets

Published online by Cambridge University Press:  27 March 2009

R. I. Mackie
Affiliation:
Veterinary Research Institute, Onderstepoort
Frances M. C. Gilchrist
Affiliation:
Veterinary Research Institute, Onderstepoort
Anna M. Robberts
Affiliation:
National Chemical Research Laboratory, P.O. Box 395, Pretoria 0001, Republic of South Africa
P. E. Hannah
Affiliation:
National Chemical Research Laboratory, P.O. Box 395, Pretoria 0001, Republic of South Africa
Helen M. Schwartz
Affiliation:
National Chemical Research Laboratory, P.O. Box 395, Pretoria 0001, Republic of South Africa

Summary

A stepwise adaptation was carried out on eight sheep through diets containing 10, 24, 44, 60 to a final diet containing 71% maize meal and molasses. The numbers of protozoa in the rumen increased in proportion to amount of readily fermentable carbohydrate fed, up to and including the 60% grain and molasses diet, while the numbers of total culturable bacteria remained essentially constant. However, the proportions of amylolytic and lactate-utilizing bacteria increased, and there was an orderly shift from acid-sensitive to more acid-tolerant species, particularly amongst the lactate-utilizers in response to the gradual decrease in the ruminal pH. Up to this stage the protozoa probably controlled the rate of fermentation by engulfing starch grains and bacteria and were thus able to maintain the pH of the rumen above 5·5. Lactic acid appeared only transiently and the peak values tended to diminish as adptation progressed.

The first day the final diet was fed the ruminal pH decreased to 5·4 or below for several hours. Within 7 days the number of protozoa had decreased by 50–80% and the number of total culturable bacteria increased sharply. Conditions in the rumen became unstable: peak values of D- and L- laotic acid increased by ca. 0·5 HIM, the acetate/propionate ratio decreased to ca. 2 and peak glucose concentration increased t o 3·2–9·5 mM. One animal refused all food for 1 day. Acid-tolerant species of lactate-utilizing bacteria multiplied rapidly in response to the increased production of ruminal lactic acid and the ratio of amylolytics to lactate-utilizers decreased from a mean of 10·7 to 3·6. This controlled the increase in lactic acid and the decrease in ruminal pH, allowing the ciliate protozoa to proliferate and regain control of the fermentation.

The types of cellulolytic bacteria did not change during the experiment. Despite their acid sensitivity, the number of cellulolytic bacteria per gram of ingesta was of the same order after 54 days on the 71% grain and molasses diet (0·5–13·3 × 107) as on the initial high roughage diet (3·2–7·6 × 107).

Three sheep which bloated showed no marked chemical or microbiological differences from the non-bloating animals.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abou Akkada, A. R. & Howard, B. H. (1960). The biochemistry of rumen protozoa. 3. The carbohydrate metabolism of Entodinium. Biochemical Journal 76, 445–51.CrossRefGoogle Scholar
Allison, M. J., Bucklin, J. A. & Dougherty, R. W. (1964). Ruminal changes after overfeeding with wheat and the effect of intraruminal inoculation on adaptation to a ration containing wheat. Journal of Animal Science 23, 1164–71.CrossRefGoogle Scholar
Allison, M. J., Robinson, I. M., Dougherty, R. W. & Bucklin, J. A. (1975). Grain overload in cattle and sheep: changes in microbial populations in the cecum and rumen. American Journal of Veterinary Research 36, 181–5.Google ScholarPubMed
Boyne, A. W., Eadie, J. M. & Raitt, K. (1957). The development and testing of a method of counting rumen ciliate protozoa. Journal of General Microbiology 17, 414–23.CrossRefGoogle ScholarPubMed
Brüggemann, J. & Giesecke, D. (1965). Uber das Wachstum von Streptococcus bovis in Gegenwart von Ammoniumsulfat als einzige Stickstoffquelle. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene 1. Abt. (Originate) 197, 347–53.Google Scholar
Bryant, M. P. & Small, N. (1956). The anaerobic monotrichous butyric acid-producing curved rodshaped bacteria of the rumen. Journal of Bacteriology 72, 1621.CrossRefGoogle ScholarPubMed
Cheng, K.-J.Hironaka, R., Jones, G. A., Nicas, T. & Costerton, J. W. (1976). Frothy feedlot bloat in cattle: production of extracellular polysaccharides and development of viscosity in cultures of Streptococcus bovis. Canadian Journal of Microbiology 22, 450–9CrossRefGoogle ScholarPubMed
Coleman, G. S. (1975). The interrelationship between rumen ciliate protozoa and bacteria. In Digestion and Metabolism in the Ruminant (ed. McDonald, I. W. and Warner, A. C. I.), pp. 149–64. Australia: University of New England Publishing Unit.Google Scholar
Dunlop, R. H. & Hammond, P. B. (1965). D-Lactic acidosis of ruminants. Annals of the New York Academy of Sciences 119, 1109–30.CrossRefGoogle ScholarPubMed
Eadie, J. M. & Hobson, P. N. (1962). Effect of the presence or absence of rumen ciliate protozoa on the total rumen bacterial count in lambs. Nature, London 193, 503–5.CrossRefGoogle ScholarPubMed
Eadie, J. M., Hyldgaard-Jensen, J., Mann, S. O., Reid, R. S. & Whitelaw, F. G. (1970). Observations on the microbiology and biochemistry of the rumen in cattle given different quantities of a pelleted barley ration. British Journal of Nutrition 24, 157–77.CrossRefGoogle ScholarPubMed
Elliott, R. C. (1967). Voluntary intake of low-protein diets by ruminants. II. Intake of food by sheep. Journal of Agricultural Science, Cambridge 69, 383–90.CrossRefGoogle Scholar
Gawehn, K. & Bergmeyer, H. U. (1970). Methoden der enzymatischen Analyse, 2nd ed, vol. II (ed. Bergmeyer, H. U.), pp. 1425 and 1450. Weinheim: Verlag Chemie.Google Scholar
Giesecke, D. (1968). Zur Keimzahlbestimmung der anaeroben lactilytischen Bakteriengruppe im Pansen. Zentralblattfür Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene 1. Abt. (Originate) 209, 101–6.Google Scholar
Giesecke, D., Lawlor, M. J. & Walser-Kärst, K. (1966). Comparative studies on the digestive physiology of sheep fed on semi-purified or roughageconcentrate diets. 2. Microbiological investigations. British Journal of Nutrition 20, 383–92.CrossRefGoogle ScholarPubMed
Grubb, J. A. & Dehority, B. A. (1975). Effects of an abrupt change in ration from all roughage to high concentrate upon rumen microbial numbers in sheep. Applied Microbiology 30, 404–12.CrossRefGoogle ScholarPubMed
Grubb, J. A. & Dehority, B. A. (1976). Variation in colony counts of total viable anaerobic rumen bacteria as influenced by media and cultural methods. Applied and Environmental Microbiology 31, 262–7.CrossRefGoogle ScholarPubMed
Gutiebbez, J., Davis, R. E., Lindahl, I. L. & Warwick, E. J. (1959). Bacterial changes in the rumen during the onset of feed-lot bloat of cattle and characteristics of Peptostreptococcus elsdenii n.sp. Applied Microbiology 7, 1622.Google Scholar
Hamlin, L. J. & Hungate, R. E. (1956). Culture and physiology of a starch–digesting bacterium (Bacteroides amylophilus n.sp.) from the bovine rumen. Journal of Bacteriology 72, 548–54.CrossRefGoogle ScholarPubMed
Hobson, P. N. (1965). Continuous culture of some anaerobic and facultatively anaerobic rumen bacteria. Journal of General Microbiology 38, 167–80.CrossRefGoogle ScholarPubMed
Hobson, P. N. & Summers, R. (1967). The continuous culture of anaerobic bacteria. Journal of General Microbiology 47, 5365.CrossRefGoogle ScholarPubMed
Huber, T. L., Cooley, J. H., Goetsch, D. D. & Das, N. K. (1976). Lactic acid-utilizing bacteria in ruminal fluid of a steer adapted from hay feeding to a high grain ration. American Journal of Veterinary Research 37, 611–13.Google ScholarPubMed
Hungate, R. E., Dougherty, R. W., Bryant, M. P. & Cello, R. M. (1952). Microbiological and physiological changes associated with acute indigestion in sheep. Cornell Veterinarian 42, 423–49.Google ScholarPubMed
Hungate, R. E., Reichl, J. & Prins, R. (1971). Parameters of rumen fermentations in a continuously fed sheep: evidence of a microbial rumination pool. Applied Microbiology 22, 1104–13.CrossRefGoogle Scholar
Kingsley, V. V. & Hoeniger, J. F. M. (1973). Growth, structure and classification of Selenomonas. Bacteriology Reviews 37, 479521.CrossRefGoogle ScholarPubMed
Kistner, A. (1960). An improved method for viable counts of bacteria of the ovine rumen which ferment carbohydrate. Journal of General Microbiology 23, 565–76.CrossRefGoogle Scholar
Kistner, A., Gouws, L. & Gilchrist, F. M. C. (1962). Bacteria of the ovine rumen. II. The functional groups fermenting carbohydrates and lactate on a diet of lucerne (Medicago saliva) hay. Journal of Agricultural Science, Cambridge 59, 8591.CrossRefGoogle Scholar
Krogh, N. (1961). Studies on alterations in the rumen fluid of sheep, especially concerning the microbial composition, when readily available carbohydrates are added to the food. III. Starch. Acta Veterinaria Scandinavica 2, 103–19.CrossRefGoogle Scholar
Krogh, N. (1963). Clinical and microbiological studies on spontaneous cases of acute indigestion in ruminants. Acta Veterinaria Scandinavica 4, 2740.CrossRefGoogle Scholar
Ladd, J. N. (1959). The fermentation of lactic acid by a Gram-negative coccus. Biochemical Journal 71, 1622.CrossRefGoogle ScholarPubMed
Latham, M. J., Sharpe, M. E. & Sutton, J. D. (1971). The microbial flora of the rumen of cows fed hay and high cereal rations and its relationship to the rumen fermentation. Journal of Applied Bacteriology 34, 425–34.CrossRefGoogle Scholar
Latham, M. J., Storry, J. E. & Sharpe, M. E. (1972). Effect of low-roughage diets on the microflora and lipid metabolism in the rumen. Applied Microbiology 24, 871–7.CrossRefGoogle ScholarPubMed
Latham, M. J., Sutton, J. D. & Sharpe, M. E. (1974). Fermentation and micro-organisms in the rumen and the content of fat in the milk of cows given low roughage rations. Journal of Dairy Science 57, 803–10.CrossRefGoogle Scholar
Mann, S. O. (1970). Some effects on the rumen microorganisms of overfeeding a high barley ration. Journal of Applied Bacteriology 33, 403–9.CrossRefGoogle ScholarPubMed
Mercer, J. R. & Annison, E. F. (1976). Utilization of nitrogen in ruminants. In Protein Metabolism and Nutrition (ed. Cole, D. J. et al. ), pp. 397416. London: Butterworths.Google Scholar
Mishra, B. (1967). Role of Streptococcus bovis in rumen metabolism with special reference to bloat in cattle. Indian Journal of Veterinary Science and Animal Husbandry 37, 232–48.Google Scholar
Moore, W. E. C. & Holdeman, L. V. (1974). In Bergey's Manual of Determinative Bacteriology, 8th ed. (ed. Buchanan, R. E. and Gibbons, N. E.), p. 633. Baltimore: Williams & Wilkins.Google Scholar
Nakamura, K. & Kanegasaki, S. (1969). Densities of ruminal protozoa of sheep established under different dietary conditions. Journal of Dairy Science 52, 250–5.CrossRefGoogle ScholarPubMed
Ogimoto, K. & Giesecke, D. (1974). Untersuchungen zur Genese und Biochemie der Pansenacidose. 2. Mikroorganismen und Umstezung von Milchsäure Isomerin. Zentralblatt für Veterinärmedizin, Reihe A 21, 532–8.Google Scholar
Potter, E. L. & Dehority, B. A. (1973). Effects of changes in feed level, starvation, and level of feed after starvation upon the concentration of rumen protozoa in the ovine. Applied Microbiology 26, 692–8.CrossRefGoogle ScholarPubMed
Prins, R. A., Lankhorst, A., Van Der Meer, P. & Van Nevel, C. J. (1975). Some characteristics of Anaerovibrio lipolytica, a rumen lipolytic organism. Antonie van Leeuwenhoek Journal of Microbiology and Serology 41, 111.CrossRefGoogle ScholarPubMed
Purser, D. B. & Moir, R. J. (1959). Ruminal flora studies in the sheep. IX. The effect of pH on the ciliate population of the rumen in vivo. Australian Journal of Agricultural Research 10, 555–64.CrossRefGoogle Scholar
Rogosa, M. (1964). The genus Veillonella. 1. General, cultural, ecological and biochemical considerations. Journal of Bacteriology 87, 162–70.CrossRefGoogle ScholarPubMed
Rogosa, M. (1971). Transfer of Peptostroptococcus elsdenii Gutierrez et al. to a new genus Megasphaera (M. Elsdenii (Gutierrez et al.) comb.nov.). International Journal of Systematic Bacteriology 21, 187–9.CrossRefGoogle Scholar
Rogosa, M. (1974). Lactobacillus. In Bergey's Manual of Determinative Bacteriology, 8th ed. (ed. Buchanan, R. E. and Gibbons, N. E.), p. 576. Baltimore: Williams & Wilkins.Google Scholar
Rogosa, M. & Sharpe, M. E. (1959). An approach to the classification of the lactobacilli. Journal of Applied Bacteriology 22, 329–40.Google Scholar
Satter, L. D. & Slyter, L. L. (1974). Effect of ammonia concentration on rumen microbial protein production in vitro. British Journal of Nutrition 32, 199208.CrossRefGoogle ScholarPubMed
Schwartz, H. M., Schoeman, C. A. & Färber, M. (1964). Utilization of urea by sheep. 1. Rates of breakdown of urea and carbohydrates in vivo and in vitro. Journal of Agricultural Science, Cambridge 63, 289–96.CrossRefGoogle Scholar
Sijpesteijn, A. K. (1948). Cellulose-decomposing bacteria from the rumen of cattle. Thesis, University of Leiden, pp. 76–9. Eduard Ijdo: The Netherlands.Google Scholar
Sims, W. (1964). A simple test for differentiating Streptococcus bovis from other streptococci. Journal of Applied Bacteriology 27, 432–3.CrossRefGoogle Scholar
Slyter, L. L., Oltjen, R. R., Kern, D. L. & Blank, F. C. (1970). Influence of type and level of grain and diethylstilbestrol on the rumen microbial population of steers fed all-concentrate diets. Journal of Animal Science 31, 9961002.CrossRefGoogle ScholarPubMed
Slyter, L. L., Oltjen, R. R., Kern, D. L. & Weaver, J. M. (1968). Microbial species including ureolytic bacteria from the rumen of cattle fed purified diets. Journal of Nutrition 94, 185–92.CrossRefGoogle ScholarPubMed
Taljaard, T. L. (1972). Representative rumen sampling. Journal of the South African Veterinary Association 43, 65–9.Google ScholarPubMed
Toerien, D. F. & Siebert, M. L. (1967). Modification of the Astell roll tube apparatus for the enumeration and cultivation of anaerobic bacteria. Laboratory Practice 16, 320–2.Google ScholarPubMed
Van Gylswyk, N. O. (1970). A comparison of two techniques for counting cellulolytic rumen bacteria. Journal of General Microbiology 60, 191–7.CrossRefGoogle ScholarPubMed
Van Niel, C. B. (1928). In The Propionic Acid Bacteria, p. 63. Haarlem, Holland: Boissevain.Google Scholar
Warner, A. C. I. (1962). Some factors influencing the rumen microbial population. Journal of General Microbiology 28, 129–46.CrossRefGoogle ScholarPubMed
Whitelaw, F. G., Hyldgaard-Jensen, J., Reid, R. S. & Kay, M. G. (1970). Volatile fatty acid production in the rumen of cattle given an all-concentrate diet. British Journal of Nutrition 24, 179–95.CrossRefGoogle ScholarPubMed