Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-20T05:08:28.241Z Has data issue: false hasContentIssue false

Immunoprecipitation of malarial acid endopeptidase

Published online by Cambridge University Press:  06 April 2009

E. Hempelmann
Affiliation:
Institut für Biochemie II, Im Neuenheimer Feld 328, D-6900 Heidelberg, FRG
B. Putfarken
Affiliation:
Division of Biochemistry, Bernhard-Nocht-Institut, Bernhard-Nocht-Strasse 74, D-2000 Hamburg 4, FRG
K. Rangachari
Affiliation:
Medical Research Council, Cell Biophysics Unit, King's College, Drury Lane, London WC2
R. J. M. Wilson
Affiliation:
Division of Parasitology, National Institute for Medical Research, Mill Hill, London NW7 1AA

Summary

Electrophoresis of extracts of schizonts of Plasmodium knowlesi in non-dissociating polyacrylamide gels, separates several bands of acid endopeptidase activity. A polyclonal antiserum, produced by immunization with purified merozoites, failed to distinguish between different bands of the parasite enzyme, indicating that they are serologically related. Apart from the loss of one minor peak, extraction in Triton X-100 did not reduce the enzyme's electrophoretic heterogeneity. The antiserum did not react with red cell acid proteases.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Banyal, H. S., Misra, G. C., Gupta, C. M. & Dutta, G. P. (1981). Involvement of malarial proteases in the interaction between the parasite and host erythrocyte in Plasmodium knowlesi infections. Journal of Parasitology 67, 623–6.CrossRefGoogle ScholarPubMed
Oman, V. L. & Lee, P. Y. (1974). Host-cell specific proteolytic enzymes in Plasmodium berghei infected erythrocytes. Southeast Asian Journal of Tropical Medicine and Public Health 5, 447–9.Google Scholar
Cook, R. T., Aikawa, M., Rock, R. C., Little, W. & Sprinz, H. (1969). The isolation and fractionation of Plasmodium knowlesi. Military Medicine 134, 866–83.CrossRefGoogle ScholarPubMed
David, P. H., Hadley, T. J., Alkawa, M. & Miller, C. H. (1984). Processing of a major parasite surface glycoprotein during the ultimate stages of differentiation in Plasmodium knowlesi. Molecular and Biochemical Parasitology 11, 267–82.CrossRefGoogle Scholar
Ericson, A. H. & Blobel, G. (1979). Early events in the biosynthesis of the lysosomal enzyme Cathepsin D. Journal of Biological Chemistry 254, 11771–4.CrossRefGoogle Scholar
Geary, T. G., Delaney, E. J., KLotz, I. M. & Jensen, J. B. (1983). Inhibition of the growth of Plasmodium falciparum in vitro by covalent modification of haemoglobin. Molecular and Biochemical Parasitology 9, 5972.CrossRefGoogle Scholar
Gyang, F. N., Poole, B. & Trager, W. (1982). Peptidases from Plasmodium falciparum cultured in vitro. Molecular and Biochemical Parasitology 5, 203–73.CrossRefGoogle ScholarPubMed
Hempelmann, E. & Wilson, R. J. M. (1980). Endopeptidases from Plasmodium knowlesi. Parasitology 80, 323–30.CrossRefGoogle ScholarPubMed
Homewood, C. A., Warhurst, D. C., Peters, W. & Baggaley, V. C. (1972). Lysosomes, pH and the antimalarial action of chloroquine. Nature, London 235, 50–2.CrossRefGoogle ScholarPubMed
Levy, M. R., Siddiqui, W. A. & Chou, S. C. (1974). Acid protease activity in Plasmodium falciparum and P. knowlesi and ghosts of their respective host red cells. Nature, London 247, 546–9.CrossRefGoogle ScholarPubMed
Mayer, R. J. & Walker, J. H. (1980). Immunochemical Methods in the Biological Sciences: Enzymes and Proteins. New York: Academic Press.Google Scholar
Owen, P. & Smyth, C. J. (1977). Enzyme analysis by quantitative immunoelectrophoresis. In Immunochemistry of Enzymes and Their Antibodies (ed. Salton, M. J. R.), pp. 148202. New York: John Wiley.Google Scholar
Pontremoli, S., Sparatoras, B., Melloni, E., Salamino, F., Michetti, M., Morelli, A., Benetti, H. & De Flora, A. (1980). Differences and similarities among three acidic endopeptidases associated with human erythrocyte membranes. Biochimica et Biophysica Acta 630, 313–22.CrossRefGoogle ScholarPubMed
Schrevel, J., Bernard, F., Maintier, C., Mayer, R. & Monsigny, M. (1984). Detection and characterization of a selective endopeptidase from Plasmodium berghei by using fluorogenic peptidyl substrates. Biochemical and Biophysical Research Communications 124, 703–10.CrossRefGoogle ScholarPubMed
Sherman, I. W. & Tsnigoshi, L. (1983). Purification of Plasmodium lophurae cathepsin D and its effects on erythrocyte membrane proteins. Molecular and Biochemical Parasitiology 8, 207–26.CrossRefGoogle ScholarPubMed
Slomianny, C., Charet, P. & Prensier, G. (1983). Ultrastructural localization of enzymes involved in the feeding processes in Plasmodium chabaudi and Babesia hylomysi. Journal of Protozoology 30, 376–82.CrossRefGoogle Scholar
Vander Jagt, D. L., Baack, B. R. & Hunsaker, L. A. (1984). Purification and characterization of an aminopeptidase from Plasmodium falciparum. Molecular and Biochemical Parasitology 10, 4554.CrossRefGoogle ScholarPubMed
Yamamoto, K., Katsuda, N., Himeno, M. & Kato, K. (1979). Cathepsin D of rat spleen. Affinity purification and properties of two types of Cathepsin D. European Journal of Biochemistry 95, 459–67.CrossRefGoogle ScholarPubMed