Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-28T16:23:22.570Z Has data issue: false hasContentIssue false

Evidence for predisposition in humans to infection with Ascaris, hookworm, Enterobius and Trichuris in a South Indian fishing community

Published online by Cambridge University Press:  06 April 2009

M. R. Haswell-Elkins
Affiliation:
Parasite Epidemiology Research Group, Department of Pure and Applied Biology, Imperial College, London University, London SW7 2BB
D. B. Elkins
Affiliation:
Parasite Epidemiology Research Group, Department of Pure and Applied Biology, Imperial College, London University, London SW7 2BB
R. M. Anderson
Affiliation:
Parasite Epidemiology Research Group, Department of Pure and Applied Biology, Imperial College, London University, London SW7 2BB

Summary

Studies of patterns of reinfection with four species of intestinal nematodes (Ascaris, hookworm, Trichuris and Enterobius) in 174 individual patients following chemotherapeutic treatment revealed statistical evidence for predisposition to heavy or light infection (relative to the average level in the overall population). Analyses of associations between the abundances of the four species of nematodes within a combined sample of 525 worm burdens showed significant correlations between 5 out of the 6 possible pair-wise comparisons between species. The relevance of these results to the design of control programmes based on chemotherapeutic application is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akagi, K. (1973). Enterobius vermicularis and enterobiasis. In Progress in Medical Parasitology in Japan, vol. 5, (ed. Morishita, K.et al.) Meguro Parasitological Museum.Google Scholar
Algali, S. T. O., Hagan, P. & Robinson, M. (1985). Hymenolepis citelli (Cestoda) and Nematospiroides dubius (Nematoda): Interspecific interaction in mice. Experimental Parasitology 60, 364–70.Google Scholar
Anderson, R. M. (1986). The population dynamics and epidemiology of intestinal nematode infections. Transactions of the Royal Society of Tropical Medicine and Hygiene 80, 686–96.Google Scholar
Anderson, R. M. & May, R. M. (1985). Helminth infections of humans: mathematical models, population dynamics and control. Advances in Parasitology 24, 1101.Google Scholar
Anderson, R. M. & Medley, G. F. (1985). Community control of helminth infections in man by mass chemotherapy. Parasitology 90, 629–60.Google Scholar
Behnke, J. M. & Robinson, M. (1985). Genetic control of immunity to Nematospiroides dubius; a nine day anthelmintic abbreviated immunising regime which separates weak and strong responder strains of mice. Parasite Immunology 7, 235–53.Google Scholar
Bensted-Smith, R., Anderson, R. M., Butterworth, A. E., Dalton, P. R., Kariuki, H. C., Koech, D., Mugambi, M., Ouma, J. H., Arap Siongok, T. K. & Sturrock, R. F. (1987). Evidence for predisposition of individual patients to reinfection with Schistosoma mansoni after treatment. Transactions of the Royal Society of Tropical Medicine and Hygiene (in the press).Google Scholar
Bumbalo, T. S., Fugazgotto, D. J., Wyczalek, J. V. (1969). Treatment of enterobiasis with pyrantel pamoate. American Journal of Tropical Medicine and Hygiene 18, 50–2.Google Scholar
Bundy, D. A. P. (1986). Epidemiological aspects of Trichuris and trichuriasis in Caribbean communities. Transactions of the Royal Society of Tropical Medicine and Hygiene 80, 706–18.Google Scholar
Chai, J. Y., Seo, B. S., Lee, S. H. & Cho, S. Y. (1983). Epidemiological studies on Ascaris lumbricoides reinfection in rural communities in Korea. II. Age specific reinfection rates and familial aggregation of the reinfected cases. Korean Journal of Parasitology 21, 142–9.Google Scholar
Chandler, A. C. (1935). A review of recent work on the rate of acquisition and loss of hookworms. American Journal of Tropical Medicine 15, 357–70.Google Scholar
Cho, S. Y., Hong, S. T., Kang, S. Y. & Song, C. Y. (1981). Morphological observation of Enterobius vermicularis expelled by various anthelmintics. Korean Journal of Parasitology 19, 1826.Google Scholar
Crandall, R. B., Crandall, C. A. & Jones, J. F. (1978). Analysis of immunosuppression during early acute infection of mice with Ascaris suum. Clinical Experimental Immunology 33, 30–7.Google Scholar
Croll, N. A. & Ghadirian, E. (1981). Wormy persons: Contributions to the nature and patterns of overdispersion with Ascaris lumbricoides, Ancylostoma duodenale, Necator americanus and Trichuris trichiura. Tropical and Geographic Medicine 33, 241–8.Google Scholar
Crombie, J. A. & Anderson, R. M. (1985). Population dynamics of Schistosoma mansoni in mice repeatedly exposed to infection. Nature, London 315, 491–3.Google Scholar
Dineen, J. K., Gregg, P., Windon, R. G., Donald, A. D. & Kelly, J. D. (1977). The role of immunologically specific and non-specific components of resistance in cross-protection to intestinal nematodes. International Journal for Parasitology 7, 211–15.Google Scholar
Elkins, D. B., Haswell-Elkins, M. & Anderson, R. M. (1986). The epidemiology and control of intestinal helminths in the Pulicat Lake region of Southern India. I. Study design and pre- and post-treatment observations on Ascaris lumbricoides infection. Transactions of the Royal Society of Tropical Medicine and Hygiene 80, 774–92.Google Scholar
Hall, A. (1981). Aspects of parasitic infection and host nutrition. Ph.D. dissertation. University of Cambridge, England.Google Scholar
Haswell-Elkins, M., Elkins, D. B., Manjula, K., Michael, E. & Anderson, R. M. (1987). The distribution and abundance of Enterobius vermicularis in a South Indian fishing community. Parasitology 95, 339–54.Google Scholar
Holmes, J. C. (1959). Competition for carbohydrate between the rat tapeworm, Hymenolepis diminuta, and the acanthocephalan, Monilijormis dubius. Journal of Parasitology 45, 31.Google Scholar
Jenkins, S. N. & Behnke, J. M. (1977). Impairment of primary expulsion of Trichuris muris in mice concurrently infected with Nematospiroides dubius. Parasitology 75, 71–8.Google Scholar
Keymer, A. E. (1982). Density-dependent mechanisms in the regulation of intestinal helminth populations. Parasitology 84, 573–87.Google Scholar
Keymer, A. E. & Hiorns, R. W. (1986). Heligmosomoides polygyrus (Nematoda): the dynamics of primary and repeated infection in outbred mice. Proceedings of the Royal Society of London, B 229, 4767.Google Scholar
Krupp, I. M. (1961). Effects of crowding and of superinfection on habitat selection and egg production in Ancylostoma caninum. Journal of Parasitology 47, 957–61.Google Scholar
Pritchard, D. I., Ali, N. M. H. & Behnke, J. M. (1984). Analysis of the mechanism of immuno-depression following heterologous antigenic stimulation during concurrent infection with Nematospiroides dubius. Immunology 51, 633–42.Google Scholar
Schad, G. A. & Anderson, R. M. (1985). Predisposition to hookworm infection in humans. Science 228, 1537–40.Google Scholar
Schad, G. A. & Banwell, J. G. (1985). Hookworms. In Tropical and Geographical Medicine (ed. Warren, K. S. and Mahmoud, A. A. F.), pp. 359372. New York: McGraw-Hill.Google Scholar
Schad, G. A., Nawalinski, T. A. & Kochar, V. (1984). Human ecology and the distribution and abundance of hookworm populations. In Human Ecology and Infectious Disease, pp. 187223. New York: Academic Press.Google Scholar
Seo, B. S. (1980). Control problems of ascariasis in Korea with special reference on the related biology and epidemiology. In Collected Papers on the Control of Soil-transmitted Helminthiasis, vol. 2. (ed. Yokogawa, M.el al.), pp. 194215. Tokyo, Japan: Asian Parasite Control Organization.Google Scholar
Siegel, S. (1956). Nonparametric Statistics. New York: McGraw-Hill.Google Scholar
Slater, A. F. G. & Keymer, A. E. (1986). Heligmosomoides polygyrus (Nematoda): the influence of dietary protein on the dynamics of repeated infection. Proceedings of the Royal Society of London, B 229, 6983.Google Scholar
Sokal, R. R. & Rohlf, F. J. (1981). Biometry, 2nd Edn.San Francisco: W. H. Freeman and Co.Google Scholar
Thein-Hlaing, (1985). Ascaris lumbricoides infections in Burma. In Ascariasis and its Public Health Significance (ed. Crompton, D. W. T., Neisheim, M. C. and Pawlowski, Z. S.), pp. 83112. London: Taylor and Francis.Google Scholar
Wakelin, D. (1985). Genetics, immunity and parasite survival. In Ecology and Genetics of Host-Parasite Interactions, (ed. Rollinson, D. and Anderson, R. M.), pp. 3954. London: Academic Press.Google Scholar
World Health Organization (1981). Intestinal protozoan and helminthic infections. Report of a WHO Scientific Group. WHO Technical Report Series, No.666.Google Scholar
Yokogawa, M., Kojima, S., Araki, K., Ogawa, K., Nimura, M., Kagei, N. & Kihata, M. (1970). Mass treatment for enterobiasis vermicularis with pyrantel pamoate. Japanese Journal of Parasitology 19, 953–7.Google Scholar