Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T02:08:21.409Z Has data issue: false hasContentIssue false

Non-equilibrium dissociating nitrogen flow over a wedge

Published online by Cambridge University Press:  29 March 2006

D. J. Kewley
Affiliation:
Department of Physics, Australian National University, Canberra
H. G. Hornung
Affiliation:
Department of Physics, Australian National University, Canberra

Abstract

Experimental results for dissociating nitrogen flow over a wedge, obtained in a free-piston shock tunnel, are described. Interferograms of the flow show clearly the curvature of the shock wave and the rise in fringe shift after the shock associated with the dissociation. It is shown that the shock curvature a t the tip of the wedge can be used to calculate the initial dissociation rate and that it is a more sensitive indication of the rate than can be obtained from fringe shift measurements under the prevailing experimental conditions. Because the free-stream dissociation fraction can be adjusted in the shock tunnel, the dependence on atomic nitrogen concentration of the dissociation rate can be determined by the shock curvature method. A detailed calculation of the flow field by an inverse method, starting from the measured shock shape, shows good agreement with experiments.

Type
Research Article
Copyright
© 1974 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appleton, J. P., Steinberc, M. & Liquornip, D. J. 1968 J. Chem. Phys. 48, 599.
Becrer, E. 1972 Ann. Rev. Fluid Mech. 4, 155.
Clarke, J. F. 1969 Gasdynamics, vol. 1. Nonequilibrium Flows, part 1 (ed. P. P. Wegener).
Garr, L. J. & Marrone, P. V. 1963 Cornell Aeron. Lab. Rep. QM-1626-A-12 (II).
Hall, J. G. 1963 Cornell Aeron. Lab. Rep. no. 128.
Hanson, R. K. & Baganoff, D. 1972 A.I.A.A. J. 10, 211.
Hayes, W. D. & Probstein, R. F. 1965 Hypersonic Flow Theory, vol. 1. Academic.
Hornung, H. G. 1972a J. Chem. Phys. 56, 3172.
Hornung, H. G. 1972b J. Fluid Mech. 53, 149.
Kewley, D. J. & Hornung, H. G. 1974 Chern. Phys. Lett. to appear.
Lordi, J. A., Mates, R. E. & Moselle, J. R. 1966 N.A.S.A. Contr. Rep. CR-472.
Millipan, R. C. & White, D. R. 1963 J. Chem. Phys. 39, 98.
Sedney, R. 1961 J. Aerospace Sci. 28, 189.
Spure, J.H. 1970 A.I.A.A. J. 8, 1039.
Spurk, J. H. & Bartos, J. M. 1966 Phys. Fluids, 9, 1278.
Stalker, R. J. 1972 Aeron. J. 76, 374.
Vincenti, W. G. & Kruger, C. H. 1965 Introduction to Physical Gasdynamics. Wiley.