Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-18T13:57:18.360Z Has data issue: false hasContentIssue false

Some measurements of particle velocity autocorrelation functions in a turbulent flow

Published online by Cambridge University Press:  29 March 2006

W. H. Snyder
Affiliation:
The Pennsylvania State University, University Park, Pennsylvania Present Address: Division of Meteorology, Environmental Protection Agency, Raleigh, North Carolina
J. L. Lumley
Affiliation:
The Pennsylvania State University, University Park, Pennsylvania

Abstract

Particle velocity autocorrelations of single spherical beads (46·5 μhollow glass, 87 μ glass, 87 μ corn pollen, and 46·5 μ copper) were measured in a grid-generated turbulence. The hollow glass beads were small and light enough to behave like fluid points; the other types had significant inertia and ‘crossing trajectories’ effects. The autocorrelations decreased much faster for heavier particles, in contradiction to previous experimental results. The integral scale for the copper beads was 1/3 of that for the hollow glass beads. The particle velocity correlations and the Eulerian spatial correlation were coincident within experimental error when the separation was non-dimensionalized by the respective integral scale. The data generated by the hollow glass beads can be used to estimate Lagrangian fluid properities. The Lagrangian time integral scale is approximated by L/u′, where L is the Eulerian integral scale and u′ is the turbulence intensity.

Type
Research Article
Copyright
© 1971 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baines, W. D. & Peterson, E. G. 1951 Trans. ASME 73, 467480.
Batchelor, G. K. 1952 Proc. Camb. Phil. Soc. 48, 345362.
Batchelor, G. K. 1956 The Theory of Homogeneous Turbulence. Cambridge University Press.
Batchelor, G. K. 1957 J. Fluid Mech. 3, 6780.
Batchelor, G. K. & Townsend, A. A. 1948 Proc. Roy. Soc A 193, 539558.
Batchelor, G. K. & Townsend, A. A. 1956 Surveys in Mechanics. Cambridge University Press.
Champagne, F. H. & Sleicher, C. A. 1967 J. Fluid Mech. 28, 177182.
Champagne, F. H., Sleicher, C. A. & Wehrmann, O. H. 1967 J. Fluid Mech. 28, 153175.
Comte-Bellot, G. & Corrsin, S. 1966 J. Fluid Mech. 25, 657682.
Corrsin, S. 1963a J. Atmos. Sci. 20, 115119.
Corrsin, S. 1963b Handbuch der Physik, 8, 524590.
Corrsin, S. & Lumley, J. L. 1956 Appl. Sci. Res A 6, 114116.
Csanady, G. T. 1963 J. Atmos. Sci. 20, 201208.
Csanady, G. T. 1964 J. Atmos. Sci. 21, 222225.
Csanady, G. T. 1967 Rep. no. 4, Contract DA-18–035-AMC-399(A), vol. 2, The Travelers Research Center, Hartford, Conn.
Frenzen, P. 1963 Argonne National Lab. A.N.L. 6794.
Fuchs, N. A. 1964 The Mechanics of Aerosols. Macmillan.
Grant, H. L. & Nisbet, I. C. T. 1957 J. Fluid Mech. 2, 263272.
Hay, J. S. & Pasquill, F. 1957 J. Fluid Mech. 2, 299310.
Inoue, E. 1951 Unpublished, Geophy. Inst., Univ. of Tokyo.
KÁrmÁn, T. Von & Howarth, L. 1938 Proc. Roy. Soc A 164, 192215.
Kennedy, D. A. 1965 Ph.D. Dissertation, Dept. of Mechanics, The Johns Hopkins University.
Lin, C. C. 1961 Statistical Theories of Turbulence. Princeton University Press.
Lumley, J. L. 1957 Ph.D. Dissertation, Dept. of Mechanics, The Johns Hopkins University.
Lumley, J. L. 1960 Appl. Sci. Res A 10, 153157.
Lumley, J. L. & Corrsin, S. 1959 Proc. Int. Symp. of Atmos. Diff. and Air Poll Advances in Geophysics, 6, 179183.Google Scholar
Lumley, J. L. & Panofsky, H. A. 1964 The Structure of Atmospheric Turbulence. Interscience.
Lumley, J. L. & Snyder, W. H. 1968 Quarterly Progress Report no. 2, Dept. of Aero. Engr., The Pennsylvania State University.
Mickelsen, W. R. 1960 J. Fluid Mech. 7, 397400.
Monin, A. S. & Yaglom, A. M. 1965 Statistical Hydromechanics, The Mechanics of Turbulence, Part 1. Moscow: Nauka Press.
Okubo, A. 1967 Phys. Fluids Suppl. 10, S 7275.
Pasquill, F. 1962 Atmospheric Diffusion. Van Nostrand.
Patterson, G. S. & Corrsin, S. 1966 Dynamics of Fluids and Plasmas. Academic.
Saffman, P. G. 1960 J. Fluid Mech. 8, 273283.
Saffman, P. G. 1961 La Mechanique de la Turbulence, pp. 5362. Paris: C.N.R.S.
Shirazi, M. A., Chao, B. T. & Jones, B. G. 1967 Report, University of Illinois at Urbana.
Snyder, W. H. 1969 Ph.D. Dissertation, Dept. of Aerospace Engr., The Pennsylvania State University.
Sutton, O. G. 1947 Quart. J. Roy. Met. Soc. 73, 426436.
Taylor, G. I. 1921 Proc. Lond. Math. Soc. 20, 196211.
Taylor, G. I. 1935 Proc. Roy. Soc A 151, 421478.
Tennekes, H. & Lumley, J. L. 1971 A First Course in Turbulence. Prentice Hall.
Tchen, C. M. 1947 Ph.D. Dissertation, University of Delft (Martinus Nijhoff, The Hague).
Townsend, A. A. 1954 Proc. Roy. Soc A 224, 487512.
Vanoni, V. A. & Brooks, N. H. 1955 Cal. Inst. Tech., Rep. no. E-46 (ASTIA Reprint Ad 66182).
Welford, W. T. 1962 Proc. of Conf. on Optical Inst. London: Chapman and Hall.
Wyngaard, J. C. 1968 J. Scient. Instrum. Ser. 2 1, 11051108.
Wyngaard, J. C. & Lumley, J. L. 1967 J. Scient. Instrum. 44, 363365.
Yudine, M. I. 1959 Proc. Int. Symp. on Atmos. Diff. and Air. Poll Advances in Geophysics, 6, 185191.Google Scholar