Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-18T23:17:38.441Z Has data issue: false hasContentIssue false

Toxoplasma gondii dense granule protein 3 (GRA3) is a type I transmembrane protein that possesses a cytoplasmic dilysine (KKXX) endoplasmic reticulum (ER) retrieval motif

Published online by Cambridge University Press:  19 April 2005

F. L. HENRIQUEZ
Affiliation:
Department of Immunology, Strathclyde Institute of Biological Sciences, University of Strathclyde, Glasgow G4 ONR, Scotland, UK
M. B. NICKDEL
Affiliation:
Department of Immunology, Strathclyde Institute of Biological Sciences, University of Strathclyde, Glasgow G4 ONR, Scotland, UK
R. MCLEOD
Affiliation:
Department of Ophthalmology and Visual Sciences, University of Chicago, 5841 S. Maryland Avenue, Chicago IL 60637, USA
R. E. LYONS
Affiliation:
Department of Immunology, Strathclyde Institute of Biological Sciences, University of Strathclyde, Glasgow G4 ONR, Scotland, UK Present address: CSIRO Livestock Industries, Livestock Applications of Biotechnology, Queensland Biosciences Precinct, 306 Carmody Rd, St Lucia, QLD, 4067, Australia.
K. LYONS
Affiliation:
Department of Immunology, Strathclyde Institute of Biological Sciences, University of Strathclyde, Glasgow G4 ONR, Scotland, UK
J.-F. DUBREMETZ
Affiliation:
UMR CNRS 5539, Bt 24, CC 107, Université de Montpellier 2, Place Eugène Bataillon, 34095 Montpellier cedex 05, France
M. E. GRIGG
Affiliation:
Department of Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Stanford, CA 94305, USA Present address: Infectious Diseases and Department of Microbiology and Immunology, University of British Columbia, Heather Pavilion D459, VGH, 2733 Heather Street, Vancouver, B.C., Canada V5Z 3J5.
B. U. SAMUEL
Affiliation:
Department of Ophthalmology and Visual Sciences, University of Chicago, 5841 S. Maryland Avenue, Chicago IL 60637, USA
C. W. ROBERTS
Affiliation:
Department of Immunology, Strathclyde Institute of Biological Sciences, University of Strathclyde, Glasgow G4 ONR, Scotland, UK

Abstract

Studies using antibodies to immunolocalize the Toxoplasma gondii dense granule protein GRA3, have shown that this protein associates strongly with the parasitophorous vacuole membrane (PVM). However, as there was no predicted membrane-spanning domain this highlighted an unanswered paradox. We demonstrate that the previously published sequence for GRA3 is actually an artificial chimera of 2 proteins. One protein, of molecular weight 65 kDa, shares the C-terminus with published GRA3 and possesses no significant sequence similarity with any protein thus far deposited in Genbank. The second, with a predicted molecular weight of 24 kDa shares the N-terminal region, is recognized by the monoclonal antibody 2H11 known to react with the dense granules of T. gondii and is therefore the authentic GRA3. The corrected GRA3 has an N-terminal secretory signal sequence and a transmembrane domain consistent with its insertion into the PVM. Antibodies to recombinant GRA3 recognize a protein of 24 kDa in T. gondii excretory–secretory antigen preparations. The signal peptide is necessary and sufficient to target GFP to the dense granules and parasitophorous vacuole. A homologue was identified in Neospora caninum. Finally, GRA3 possesses a dilysine ‘KKXX’ endoplasmic reticulum (ER) retrieval motif that rationalizes its association with PVM and possibly the host cell ER.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ACHBAROU, A., MERCEREAU-PUIJALON, O., SADAK, A., FORTIER, B., LERICHE, M. A., CAMUS, D. & DUBREMETZ, J.-F. ( 1991). Differential targeting of dense granule proteins in the parasitophorous vacuole of Toxoplasma gondii. Parasitology 103, 321329.CrossRefGoogle Scholar
AJIOKA, J. W., BOOTHROYD, J. C., BRUNK, A., HEHL, L., HILLIER, L., MANGER, I. D., MARRA, M., OVERTON, G. C., ROOS, D. S. & WAN, K. L. ( 1998). Gene discovery by EST sequencing in Toxoplasma reveals sequences restricted to the apicomplexa. Genome Research 8, 1828.CrossRefGoogle Scholar
ASAI, T., MIURA, S., SIBLEY, L. D., OKABAYASHI, H. & TAKEUCHI, T. ( 1995). Biochemical and molecular characterization of nucleotide triphosphate hydrolase isozymes from the parasitic protozoan Toxoplasma gondii. Journal of Biological Chemistry 270, 1139111397.CrossRefGoogle Scholar
BERMUDES, D., DUBREMETZ, J.-F., ACHBROU, A. & JOINER, K. A. ( 1994). Cloning of a cDNA encoding the dense granule protein GRA3 from Toxoplasma gondii. Molecular and Biochemical Parasitology 68, 247257.CrossRefGoogle Scholar
BRADFORD, M. M. ( 1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 7, 248254.CrossRefGoogle Scholar
CESBRON-DELAUW, M.-F. ( 1994). Dense granule organelles of Toxoplasma gondii: their role in host parasite relationship. Parasitology Today 10, 293296.CrossRefGoogle Scholar
CHOMCZYNSKI, P. & SACCHI, N. ( 1987). Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry 162, 156159.CrossRefGoogle Scholar
COHEN, S. N., CHANG, A. C. & HSU, L. ( 1972). Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proceedings of the National Academy of Sciences, USA 69, 21102114.CrossRefGoogle Scholar
DENTON, H., ROBERTS, C. W., ALEXANDER, J., THONG, K. W. & COOMBS, G. H. ( 1996). Enzymes of energy metabolism in the bradyzoites and tachyzoites of Toxoplasma gondii. FEMS Microbiology Letters 137, 103108.CrossRefGoogle Scholar
JOHNSON, A. M., DUBEY, J. P. & DAME, J. B. ( 1986). Purification and characterization of Toxoplasma gondii tachyzoite DNA. Australian Journal of Experimental, Biological and Medical Sciences 64, 351355.CrossRefGoogle Scholar
JOINER, K. A., FUHRMAN, H. M., MIETTINEN, H. M., KASPER, L. H. & MELLMAN, I. ( 1990). Toxoplasma gondii: Fusion competence of parasitophorous vacuole in Fc receptor-transfected fibroblasts. Science 24, 641646.CrossRefGoogle Scholar
JONES, T. C. & HIRSCH, J. C. ( 1972). The interaction between Toxoplasma gondii and mammalian cells. II. The absence of lysosomal fusion with phagocytic vacuoles containing living parasites. Journal of Experimental Medicine 136, 11731194.Google Scholar
KISSINGER, J. C., GAJRIA, B., LI, L., PAULSEN, I. T. & ROOS, D. S. ( 2003). ToxoDB: Acessing the Toxoplasma gondii genome. Nucleic Acids Research 31, 234236.CrossRefGoogle Scholar
KOZAK, M. ( 1983). Comparison of initiation of protein synthesis in prokaryotes, eukaryotes and organelles. Microbiology Reviews 47, 145.Google Scholar
KROGH, A., LARSSON, B., VON HEIJNE, G. & SONNHAMMER, E. L. L. ( 2001). Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology 305, 567580.CrossRefGoogle Scholar
LYONS, R. E., LYONS, K., McLEOD, R. & ROBERTS, C. W. ( 2001). Construction and validation of a polycompetitor construct (SWITCH) for use in competitive RT-PCR to assess tachyzoite-bradyzoite interconversion. Parasitology 123, 433439.CrossRefGoogle Scholar
MIN, G. S. & POWELL, J. R. ( 1997). Long-distance genome walking uing the long and accurate polymerase chain reaction. Biotechniques 24, 398400.Google Scholar
MORDUE, D. G., HÅKASSON, I., NIESMAN, L. D. & SIBLEY, L. D. ( 1999). Toxoplasma gondii resides in a vacuole that avoids fusion with host cell endocytic and exocytic vesicular trafficking pathways. Experimental Parasitology 92, 8799.CrossRefGoogle Scholar
NAKAI, K. A. & HORTON, P. ( 1999). PSORT: A program for detecting the sorting signals of protein and predicting their subcellular localization. Trends in Biochemical Sciences 24, 3435.CrossRefGoogle Scholar
NEUDECK, A., STACHELHAUS, S., NISCHIK, N., STRIEPEN, B., REICHMANN, G. & FISCHER, H.-G. ( 2002). Expression variance, biochemical and immunological properties of Toxoplasma gondii dense granule protein GRA7. Microbes and Infection 4, 581590.CrossRefGoogle Scholar
NIELSEN, H., ENGELBRECHT, J., BRUNAK, S. & VON HEIJNE, G. ( 1997). Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Engineering 10, 16.CrossRefGoogle Scholar
NIELSEN, H. V., LAUEMOLLER, S. L., CHRISTIANSEN, L., BUUS, S., FOMSGAARD, A. & PETERSEN, E. ( 1999). Complete protection against lethal Toxoplasma gondii infection in mice immunized with a plasmid encoding the SAG-1 gene. Infection and Immunity 67, 63586363.Google Scholar
OSSORIO, P. N., DUBREMETZ, J.-F. & JOINER, K. A. ( 1994). A soluble secretory protein of the intracellular parasite Toxoplasma gondii associates with the parasitophorous vacuole membrane through hydrophobic interactions. Journal of Biological Chemistry 269, 1535015357.Google Scholar
SCHWAB, J. C., BECKER, C. J. & JOINER, K. A. ( 1994). The parasitophorous vacuole membrane surrounding intracellular Toxoplasma gondii functions as a molecular sieve. Proceedings of the National Academy of Sciences, USA 91, 509513.CrossRefGoogle Scholar
SIBLEY, L. D., WEIDNER, E. & KRAHENBUHL, J. L. ( 1985). Phagosome acidification blocked by intracellular Toxoplasma gondii. Nature, London 315, 416419.CrossRefGoogle Scholar
SINAI, A. P. & JOINER, K. A. ( 2001). The Toxoplasma gondii protein ROP2 mediates host organelle association with the parasitophorous vacuole membrane. Journal of Cell Biology 154, 95108.CrossRefGoogle Scholar
SINAI, A. P., WEBSTER, P. & JOINER, K. A. ( 1997). Association of host cell endoplasmic reticulum and mitochondria with the Toxoplasma gondii parasitophorous vacuole membrane: a high affinity interaction. Journal of Cell Science 110, 21172128.Google Scholar
STRIEPEN, B., HE, C. Y., MATRAJT, M., SOLDATI, D. & ROOS, D. S. ( 1998). Expession, selection, and organellar targeting of the green fluorescent protein in Toxoplasma gondii. Molecular and Biochemical Parasitology 92, 325338.CrossRefGoogle Scholar
VON HEIJNE, G. ( 1986). A method for predicting signal sequence cleavage sites. Nucleic Acid Research 11, 46834690.CrossRefGoogle Scholar