Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-18T04:37:14.531Z Has data issue: false hasContentIssue false

Flow equivalence of reducible shifts of finite type

Published online by Cambridge University Press:  19 September 2008

Danrung Huang
Affiliation:
Mathematical Sciences Research Institute, 1000 Centennial Drive, Berkeley, CA 94720, USA

Abstract

Using an invariant of Cuntz, we classify reducible shifts of finite type with two irreducible components up to flow equivalence.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[B1]Boyle, M.. Almost flow equivalence for hyperbolic basic sets. Topology 31 (1992), 857864.CrossRefGoogle Scholar
[B2]Boyle, M.. Symbolic dynamics and matrices. Combinatorial and Graph-Theoretic Problems in Linear Algebra. IMA Volumes in Mathematics (50). Brualdi, R., Friedland, S. and Klee, V., eds. Springer: Berlin, 1993. pp 138.Google Scholar
[Bo]Bowen, R.. On Axiom A diffeomorphisms. CBMS Regional Conference Series in Mathematics, No. 35. American Mathematical Society: Providence, RI, 1977.Google Scholar
[BoF]Bowen, R. & Franks, J.. Homology for zero-dimensional basic sets. Ann. Math. 106 (1977), 7392.Google Scholar
[BH]Boyle, M. & Handelman, D.. Algebraic shift equivalence and primitive matrices. Trans. Amer. Math. Soc. 336 (1) (1993), 121149.Google Scholar
[C1]Cuntz, J.. A class of C*-algebras and topological Markov chains II: reducible chains and the Extfunctor for C*-algebras. Invent. Math. 63 (1981), 2540.Google Scholar
[C2]Cuntz, J.. The classification problem for the C*-algebras O A. Geometric Methods in Operator Algebras. Araki, H. and Effros, E.G., eds. Longman: New York, 1986. pp 145151.Google Scholar
[C3]Cuntz, J.. Personal communication.Google Scholar
[CK]Cuntz, J. & Krieger, W.. A class of C*-algebras and topological Markov chains. Invent. Math. 56 (1980), 251268.Google Scholar
[F]Franks, J.. Flow equivalence of subshifts of finite type. Ergod. Th. & Dyn. Sys. 4 (1984), 5366.CrossRefGoogle Scholar
[H]Handelman, D.. Positive matrices and dimension groups affiliated to C*-algebras and topological Markov chains. J. Operator Th. 6 (1981), 5574.Google Scholar
[Hu]Hua, L. K.. Introduction to Number Theory. Springer: Berlin, 1982. (English translation.)Google Scholar
[KiRo]Kim, K. H. & Roush, F. W.. Topological classification of reducible subshifts. PU. M. A. Ser. B. 3 (2–3–4) (1992), 87102.Google Scholar
[K]Krieger, W.. On sofic systems I. Israel J. Math. 48 (1984), 305330.Google Scholar
[PS]Parry, W. & Sullivan, D.. A topological invariant for flows on one dimensional spaces. Topology 14 (1975), 297299.Google Scholar
[PT]Parry, W. & Tuncel, S.. Classification Problems in Ergodic Theory. LMS Lecture Note Series Vol. 67. Cambridge University Press: Cambridge, 1982.CrossRefGoogle Scholar
[R]Rørdam, M.. Classification of Cuntz-Krieger algebras. K Theory. To appear.Google Scholar
[T]Tuncel, S.. Faces of Markov chains and matrices of polynomials. Symbolic Dynamics and Its Applications, 135, Contemporary Mathematics 1992.Google Scholar
[W]Williams, R. F.. Classification of subshifts of finite type. Ann. Math. 98 (1973), 120153;Google Scholar
Errata, Ann. Math. 99(1974), 380381.Google Scholar