Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T10:27:07.480Z Has data issue: false hasContentIssue false

Trends in western Ross Sea emperor penguin chick abundances and their relationships to climate

Published online by Cambridge University Press:  22 October 2007

S.M. Barber-Meyer*
Affiliation:
Scripps Institution of Oceanography, Center for Marine Biotechnology and Biomedicine, Scholander Hall, 9500 Gilman Drive #0204, La Jolla, CA 92093-0204, USA
G.L. Kooyman
Affiliation:
Scripps Institution of Oceanography, Center for Marine Biotechnology and Biomedicine, Scholander Hall, 9500 Gilman Drive #0204, La Jolla, CA 92093-0204, USA
P.J. Ponganis
Affiliation:
Scripps Institution of Oceanography, Center for Marine Biotechnology and Biomedicine, Scholander Hall, 9500 Gilman Drive #0204, La Jolla, CA 92093-0204, USA
*
*Corresponding author: shannonbarbermeyer@gmail.com

Abstract

The emperor penguin (Aptenodytes forsteri) is extremely dependent on the extent and stability of sea ice, which may make the species particularly susceptible to environmental change. In order to appraise the stability of the emperor penguin populations at six colonies in the western Ross Sea, we used linear regression analysis to evaluate chick abundance trends (1983–2005) and Pearson's r correlation to assess their relation to two local and two large-scale climate variables. We detected only one significant abundance trend; the Cape Roget colony increased from 1983 to 1996 (n = 6). Higher coefficients of variation in chick abundances at smaller colonies (Cape Crozier, Beaufort Island, Franklin Island) suggest that such colonies occupy marginal habitat, and are more susceptible to environmental change. We determined chick abundance to be most often correlated with local Ross Sea climate variables (sea ice extent and sea surface temperature), but not in consistent patterns across the colonies. We propose that chick abundance is most impacted by fine scale sea ice extent and local weather events, which are best evaluated by on-site assessments. We did not find sufficient evidence to reject the hypothesis that the overall emperor penguin population in the Ross Sea was stable during this period.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainley, D.G. 1983. Biomass of birds and mammals in the Ross Sea. In Siegfried, W.R., Condy, P.R. & Laws, R.M., eds. Antarctic nutrient cycles and food webs. Berlin: Springer, 498515.Google Scholar
Ancel, A., Kooyman, G., Ponganis, P.J., Gendner, J.-P., Lignon, J., Mestre, X., Huin, N., Thorson, P.H., Robisson, P. & Le Maho, Y. 1992. Foraging behaviour of emperor penguins as a resource detector in winter and summer. Nature, 360, 336339.CrossRefGoogle Scholar
Barbraud, C. & Weimerskirch, H. 2001. Emperor penguins and climate change. Nature, 411, 183186.CrossRefGoogle ScholarPubMed
Barbraud, C. & Weimerskirch, H. 2006. Antarctic birds breed later in response to climate change. Proceedings of the National Academy of Sciences, 103, 62486251.Google Scholar
Cook, R.D. & Weisberg, S. 1999. Applied regression including computing and graphics. New York: John Wiley, 623 pp.CrossRefGoogle Scholar
Croxall, J.P., Trathan, P.N. & Murphy, E.J. 2002. Environmental change and Antarctic seabird populations. Science, 297, 15101514.CrossRefGoogle ScholarPubMed
Curran, M.A.J., van Ommen, T.D., Morgan, V.I., Phillips, K.L. & Palmer, A.S. 2003. Ice core evidence for Antarctic sea ice decline since the 1950s. Science, 302, 12031206.CrossRefGoogle ScholarPubMed
Doran, P.T., Priscu, J., Lyons, W.B., Walsh, J.E., Fountain, A.G., McKnight, D.M., Moorehead, D.L., Virginia, R.A., Wall, D.H., Clow, G.D., Fritsen, C.H., McKay, C.P. & Parsons, A.N. 2002. Antarctic climate cooling and terrestrial ecosystem response. Nature, 415, 517520.CrossRefGoogle ScholarPubMed
Dugger, K.M., Ballard, G., Ainley, D.G. & Barton, K.J. 2006. Effects of flipper bands on foraging behavior and survival of Adélie penguins (Pygoscelis adeliae). The Auk, 123, 858869.CrossRefGoogle Scholar
Gauthier-Clerc, M., Gendner, J.-P., Ribic, C.A., Fraser, W.R., Woehler, E.J., Descamps, S., Gilly, C., Le Bohec, C. & Le Maho, Y. 2004. Long-term effects of flipper bands on penguins. Proceedings of the Royal Society of London, B271, S423S426.Google Scholar
Gloersen, P. & Mernicky, A. 1998. Oscillatory behavior in Antarctic sea ice concentration. Antarctic Research Series, 74, 161171.Google Scholar
Jackson, S. & Wilson, R.P. 2002. The potential costs of flipper-bands to penguins. Functional Ecology, 16, 141148.CrossRefGoogle Scholar
Jenouvrier, S., Barbraud, C. & Weimerskirch, H. 2005a. Long-term contrasted responses to climate of two Antarctic seabird species. Ecology, 86, 28892903.CrossRefGoogle Scholar
Jenouvrier, S., Weimerskirch, H., Barbraud, C., Park, Y.-H. & Cazelles, B. 2005b. Evidence of a shift in the cyclicity of Antarctic seabird dynamics linked to climate. Proceedings of the Royal Society of London, B272, 887895.Google Scholar
Kato, A., Watanabe, K. & Naito, Y. 2004. Population changes of Adélie and emperor penguins along the Prince Olav Coast and on the Riiser-Larsen Peninsula. Polar Bioscience, 17, 117122.Google Scholar
Kooyman, G.L. 1993. Breeding habitats of emperor penguins in the western Ross Sea. Antarctic Science, 5, 143148.CrossRefGoogle Scholar
Kooyman, G.L. 1994. Natural history of emperor penguin colonies of the Ross Sea, 1993. Antarctic Journal of the United States 29(5), 170171.Google Scholar
Kooyman, G.L., Ainley, D.G., Ballard, G. & Ponganis, P.J. 2007. Effects of giant icebergs on two emperor penguin colonies in the Ross Sea, Antarctica. Antarctic Science, 19, 3138.CrossRefGoogle Scholar
Kooyman, G.L. & Mullins, J.L. 1990. Ross Sea emperor penguin breeding populations estimated by aerial photography. In Kerry, K.R. & Hempel, G., eds. Antarctic ecosystems: ecological change and conservation. Berlin: Springer, 169176.CrossRefGoogle Scholar
Kooyman, G.L., Siniff, D.B., Stirling, I. & Bengston, J.L. 2004. Moult habitat, pre- and post-moult diet and post-moult travel of Ross Sea emperor penguins. Marine Ecology Progress Series, 267, 281290.CrossRefGoogle Scholar
Kwok, R. & Comiso, J.C. 2002. Southern Ocean climate and sea ice anomalies associated with the Southern Oscillation. Journal of Climate, 15, 487501.2.0.CO;2>CrossRefGoogle Scholar
Lefebvre, W., Goosse, H., Timmerman, R. & Fichefet, T. 2004. Influence of southern annular mode on the sea ice-ocean ecosystem. Journal of Geophysical Research Oceans, 109, doi:10.1029/2004JC002403.Google Scholar
Loeb, V.J., Siegel, V., Holm-Hansen, O., Hewitt, R., Fraser, W., Trivelpiece, W. & Trivelpiece, S. 1997. Effects of sea ice extent and krill or salp dominance on the Antarctic food web. Nature, 387, 897900.CrossRefGoogle Scholar
Micol, T. & Jouventin, P. 2001. Long-term population trends in seven Antarctic seabirds at Pointe Géologie (Terre Adélie): human impact compared with environmental change. Polar Biology, 24, 175185.CrossRefGoogle Scholar
Mougin, J.-L. 1966. Observation écologiques à la colonie Manchots empereurs de Pointe Géologie (Terre Adélie) en 1964. L'Oiseau et la Revue Franç d'Ornithologie, 36, 167226.Google Scholar
Mougin, J.-L. & van Beveren, M. 1979. Structure et dynamique de la population de manchots empereur Aptenodytes forsteri de la colonie de l'archipel de Pointe Géologie, Terre Adélie. Compote Rendus Academie Science de Paris, 289D, 157160.Google Scholar
Murphy, E.J., Clarke, A., Symon, C. & Priddle, J. 1995. Temporal variation in Antarctic sea ice - analysis of a long-term fast-ice record from the South Orkney Islands. Deep-Sea Research I, 42, 10451062.CrossRefGoogle Scholar
Nicol, S., Pauly, T., Bindoff, N.L., Wright, S., Thiele, D., Hosie, G.W., Strutton, P.G. & Woehler, E. 2000. Ocean circulation off east Antarctica affects ecosystem structure and sea ice extent. Nature, 406, 504507.CrossRefGoogle ScholarPubMed
Parkinson, C.L. 2004. Southern ocean sea ice and its wider linkages: insights revealed from models and observations. Antarctic Science, 16, 387400.CrossRefGoogle Scholar
Peterson, W.B. & White, R.G. 1998. Slow oceanic teleconnections linking the Antarctic Circumpolar Wave with the tropical El Niño-Southern Oscillation. Journal of Geophysical Research, 103, 24573–24 583.CrossRefGoogle Scholar
Robertson, G. 1992. Population size and breeding success of emperor penguins Aptenodytes forsteri at Auster and Taylor Glacier colonies, Mawson Coast, Antarctica. Emu, 92, 6571.CrossRefGoogle Scholar
National Weater Service Climate Prediction Center. 2007. National Weather Service Climate Prediction Center Camp Springs, Maryland, USA; http://www.cpc.noaa.gov/products/precip/CWlink/daily_ao_index/aao/monthly.aao.index.b79.current.ascii.tableGoogle Scholar
National Snow and Ice Data Center. 2007. National Snow and Ice Data Center, Boulder, Colorado, USA (GSFC bootstrap method, 1978-2004; NASA team, 2005) http://nsidc.org/data/sea_ice.htmlGoogle Scholar
Simmonds, I. & Martinson, D.G. 1995. Relationships between the interannual variability of Antarctic sea ice and the Southern Oscillation. Journal of Climate, 8, 637647.2.0.CO;2>CrossRefGoogle Scholar
Climate Research Unit. 2007. Climate Research Unit, Norwich, UKhttp://www.cru.uea.ac.uk/cru/data/soi.htmGoogle Scholar
Jet Propulsion Laboratory. 2007. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USAhttp://poet.jpl.nasa.govGoogle Scholar
Smith, A.M., Vaughan, D.G., Doake, C.S.M. & Johnson, A.C. 1998. Surface lowering of the ice ramp at Rothera Point, Antarctic Peninsula in response to regional climate change. Annals of Glaciology, 27, 113118.CrossRefGoogle Scholar
Stammerjohn, S.E. & Smith, R.C. 1997. Opposing southern ocean climate patterns as revealed by trends in regional sea ice coverage. Climatic Change, 37, 617639.CrossRefGoogle Scholar
Todd, F.S. 1980. Factors influencing emperor penguin mortality at Cape Crozier and Beaufort Island, Antarctica. Le Gerfaut, 70, 3749.Google Scholar
Turner, J., Lachlan-Cope, T.A., Colwell, S., Marshall, G.J. & Connolley, W.M. 2006. Significant warming of the Antarctic winter troposphere. Science, 311, 19141917.CrossRefGoogle ScholarPubMed
Vaughan, D.G., Marshall, G.J., Connolley, W.M., King, J.C. & Mulvaney, R. 2001. Climate change: devil in the detail. Science, 293, 17771779.CrossRefGoogle ScholarPubMed
Weimerskirch, H., Inchausti, P., Guinet, C. & Barbraud, C. 2003. Trends in bird and seal populations as indicators of a system shift in the Southern Ocean. Antarctic Science, 15, 249256.CrossRefGoogle Scholar
White, W.B. & Peterson, R.G. 1996. An Antarctic circumpolar wave in surface pressure, wind, temperature and sea ice extent. Nature, 380, 699702.CrossRefGoogle Scholar
Williams, T.D. 1995. Emperor penguin Aptenodytes forsteri. In Williams, T.D., ed. The Penguins Spheniscidae. Oxford: Oxford University Press, 152160.Google Scholar
Wilson, P.R., Ainley, D.G., Nur, N., Jacobs, S.S., Barton, K.J., Ballard, G. & Comiso, J.C. 2001. Adélie penguin population change in the pacific sector of Antarctica: relation to sea ice extent and the Antarctic Circumpolar Current. Marine Ecology Progress Series, 213, 301309.CrossRefGoogle Scholar
Woehler, E.J. 1993. The distribution and abundance of Antarctic and Subantarctic penguins. Cambridge: Scientific Committee on Antarctic Research (SCAR), 76 pp.Google Scholar
Woehler, E.J. & Croxall, J.P. 1997. The status and trends of Antarctic and sub-Antarctic seabirds. Marine Ornithology, 25, 4366.Google Scholar
Woehler, E.J., Cooper, J., Croxall, J.P., Fraser, W.R., Kooyman, G.L., Miller, G.D., Nel, D.C., Patterson, D.L., Peter, H.-U., Ribic, C.A., Salwicka, K., Trivelpiece, W.Z. & Weimerskirch, H. 2001. A statistical assessment of the status and trends of Antarctic and sub-Antarctic seabirds. Report on SCAR BBS workshop on Southern Ocean seabird populations. Montana: SCAR, 45 pp.Google Scholar
Yuan, X. & Martinson, D.G. 2000. Antarctic sea ice extent variability and its global connectivity. Journal of Climate, 13, 16971717.2.0.CO;2>CrossRefGoogle Scholar
Zwally, H.J., Comiso, J.C., Parkinson, C.L., Campbell, W.J., Carsey, F.D. & Gloersen, P. 1983. Antarctic sea ice, 1973–1976: satellite passive-microwave observations. NASA SP-459. Washington, DC: NASA, 206 pp.Google Scholar
Zwally, H.J., Comiso, J.C., Parkinson, C.L., Cavalieri, D.J. & Gloersen, P. 2002. Variability of Antarctic sea ice 1979–1998. Journal of Geophysical Research Oceans, 107, doi:10.1029/2000JC000733.Google Scholar