Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T10:24:04.029Z Has data issue: false hasContentIssue false

Preparation of Perovskite Conductive LaNiO3 Films by Sol-Gel Techniques

Published online by Cambridge University Press:  01 February 2011

Pei-Ying Lai
Affiliation:
bragger@mail.mse.ncku.edu.tw, National Cheng Kung University, Department of Materials Science and Engineering, No.1,Ta-Hsueh Road,Tainan,Taiwan,ROC., Tainan, N/A, 701, Taiwan, 886-6-2757575
Jen-Sue Chen
Affiliation:
jenschen@mail.ncku.edu.tw, National Cheng Kung University, Department of Materials Science and Engineering, No.1,Ta-Hsueh Road,Tainan,Taiwan,ROC., Tainan, N/A, N/A, Taiwan
Get access

Abstract

Metallic thin films of LaNiO3 (LNO) have been prepared by the sol-gel method using lanthanum nitrate [La(NO3)3·6H2O] and nickel acetate [Ni(CH3COO)2·4H2O] as raw materials. X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and electrical measurements were used to characterize the multilayer LNO thin films. The perovskite phase appears after annealing at temperatures above 600 °C. LNO thin films are n-type metallic oxide. The lowest resistivity is 621 °Ω-cm after annealing at 600 °C, and the carrier concentration is 6.09×1022/cm3.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Voorhoeve, R. J. H., Johnson, D. W., Remeika, J. P., and Gallagher, P. K., Science 203, 827 (1977).Google Scholar
2. Yoon, S. M., ToKumitsu, E., and Ishiwara, H., Appl. Surf. Sci. 117–118, 447 (1997).Google Scholar
3. Koo, S. M., Zheng, L. R., and Rao, K. V., J. Mater. Res. 14, 3833 (1999).Google Scholar
4. Rajeev, K. P. and Raychaudhuri, A. K., Phys. Rev. B 46, 1309 (1992).Google Scholar
5. Satyalakshmi, K. M., Mallya, R. M., Ramanathan, K. V., Wu, X. D., Brainard, B., Gautier, D. C., Vasanthacharya, N. Y., and Hegde, M. S., Appl. Phys. Lett. 62, 1233 (1993).Google Scholar
6. Prasad, K. V. R., Varma, K. B. R., Rogu, A. R., Satyalakshnmi, K. M., Mallya, R. M., and Ilegde, M. S., Appl. Phys. Lett. 63, 1898 (1993).Google Scholar
7. Yu, T., Chen, Y. F., Liu, Z. G., Xiong, S. B., Sun, L., Chen, X. Y., and Ming, N. B., Mater. Lett. 26, 291 (1996).Google Scholar
8. Chen, M. S., Wu, T. B., and Wu, J. M., Appl. Phys. Lett. 68, 1430 (1996).Google Scholar
9. Xuchen, L., Tingxian, X., and Xianghong, D., Sensors and Actuators B 67, 24 (2000).Google Scholar
10. Brugger, P. A. and Mocellin, A., J. Mater. Sci. 21, 4431 (1986).Google Scholar
11. Meng, X. J., Sun, J. L., Yu, J., Ye, H. J., Guo, S. L., and Chu, J. H., Appl. Surf. Sci. 171, 68 (2001).Google Scholar
12. Tseng, T. F., Yang, C. C., Liu, K. S., Wu, J. M., Wu, T. B. and Lin, I. N., Jpn. J. Appl. Phys. 35, 4743 (1996).Google Scholar
13. Miyake, S., Yumamoto, K., Fujihara, S. and Kimura, T., J. Am. Ceram. Soc. 85, 992 (2002).Google Scholar
14. Heifets, E., Kotomin, E. A., and Maier, J., Surf. Sci. 462, 19 (2000).Google Scholar
15. Wang, G. S., Zhao, Q., Meng, X. J., Chu, J. H., and R'emiens, D., J. Cryst. Growth 277, 450 (2005).Google Scholar
16. Moulder, J. F., Stickle, W. F., Sobol, P. E., and Bomben, K. D., Handbook of X-ray Photoelectron Spectroscopy, Chastain, J. and King, R. C. Jr, Editor, (Physical Electronics Inc., Minnesota, 1995).Google Scholar