Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-16T04:53:58.854Z Has data issue: false hasContentIssue false

A Semiconductor Nano-Patterning Approach Using AFM-Scratching Through Oxide Thin Layers

Published online by Cambridge University Press:  11 February 2011

L. Santinacci
Affiliation:
University of Erlangen-Nuremberg, Department of Materials Science - LKO Martensstrasse 7, D-91058 Erlangen, Germany
T. Djenizian
Affiliation:
University of Erlangen-Nuremberg, Department of Materials Science - LKO Martensstrasse 7, D-91058 Erlangen, Germany
P. Schmuki
Affiliation:
University of Erlangen-Nuremberg, Department of Materials Science - LKO Martensstrasse 7, D-91058 Erlangen, Germany
Get access

Abstract

AFM-scratching was performed through thin oxide layer which was either a native oxide layer (1.5 – 2 nm thick) or a thermal oxide layer (10 nm thick). Due to their insulating properties, the SiO2 films act as masks for the metal electrochemical deposition. In the scratched openings copper deposition can take place selectively and thus nano-scale metal lines could be successfully plated onto the p-type silicon substrates. Using particularly, if sufficiently thick thermal oxide has advantages over the native oxide, it allows a H-termination of the Si within the grooves (HF treatment) without eliminating the oxide layer on the rest of the surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Landolt, D., J. Electrochem. Soc., 149, S9 (2002).Google Scholar
2. Craighead, H. G., Howard, R. E., Jackel, L. D., and Mankiewich, P. M., Appl. Phys. Lett., 42, 38 (1982).Google Scholar
3. Friedrich, C. R., Warrington, R., Bacher, W., Bauer, W., Coane, P. J., Göttert, J., Hanemann, T., Hausselt, J., Heckele, M., Knitter, R., Mohr, J., Pioter, V., Ritzhaupt-Kleiss, H. J., and Ruprecht, R., in High Aspect Ratio Processing, in Microlithography, Micromachining and Microfabrication, SPIE, (1997) p. 301.Google Scholar
4. Dobsiz, E. A. and Marrian, C. R. K., Appl. Phys. Lett., 58, 2526 (1991).Google Scholar
5. Schmuki, P., Erickson, L. E. and Lockwood, D. J., Phys. Rev. Lett., 80, 4060 (1998)Google Scholar
6. Schmuki, P. and Erickson, L. E., Phys. Rev. Lett., 85, 2985 (2000).Google Scholar
7. Ullmann, R., Will, T., and Kolb, D. M., Chem. Phys. Lett., 209, 238 (1993).Google Scholar
8. Diesinger, H., Bsiesy, A.) and Hérino, R., J. Appl. Phys, 90, 4862 (2001).Google Scholar
9. Schmuki, P., Maupai, S., Djenizian, T., Santinacci, L., Spiegel, A. and Schlierf, U., “Techniques in Electrochemical Nanotechnology” in Encyclopedia of Nanotechnology, Nalwa, H. S. Ed. (American Scientific Publishers, in press).Google Scholar
10. Santinacci, L., Djenizian, T. and Schmuki, P., J. Electrochem. Soc., 148, C640 (2001).Google Scholar
11. Santinacci, L., Djenizian, T. and Schmuki, P., Appl; Phys. Lett., 79, 1882 (2001).Google Scholar
12. Santinacci, L., Djenizian, T., Ecoffey, S., Mokdad, H., Campanella, T. and Schmuki, P., Electrochim. Acta, submitted.Google Scholar
13. Budevski, E., Staikov, G., and Lorenz, W. J., Electrochemical Phase Formation and Growth (VCH, Weinheim, 1996).Google Scholar