Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T18:12:23.662Z Has data issue: false hasContentIssue false

Synthesis of Aerogel-Metal Cluster Composites by Gamma Radiolysis

Published online by Cambridge University Press:  11 February 2011

Massimo F. Bertino
Affiliation:
Department of Physics, University of Missouri-Rolla, Rolla, MO 65409, USA
Jared F. Hund
Affiliation:
Department of Physics, University of Missouri-Rolla, Rolla, MO 65409, USA
Guohui Zhang
Affiliation:
Department of Chemistry, University of Missouri-Rolla, Rolla, MO 65409, USA
Chariklia Sotiriou-Leventis
Affiliation:
Department of Chemistry, University of Missouri-Rolla, Rolla, MO 65409, USA
Nicholas Leventis
Affiliation:
Department of Chemistry, University of Missouri-Rolla, Rolla, MO 65409, USA
Akira T. Tokuhiro
Affiliation:
Department of Nuclear Engineering, University of Missouri-Rolla, Rolla, MO 65409, USA
John Farmer
Affiliation:
MURR, University of Missouri-Columbia, Columbia, MO 65211, USA.
Get access

Abstract

Noble metal clusters (Ag, Au) were formed in a silica aerogel matrix by gamma irradiation of hydrogel precursors loaded with aqueous solutions containing Ag+ or [AuCl4]- ions. Hydrogels exposed to gamma rays assumed the color expected for colloidal suspensions of Ag (respectively Au) clusters. The hydrogels were subsequently washed and supercritically dried, without any evident change in color, indicating that the metal clusters were not removed during drying. Typical gamma ray doses were between 3 and 3.5 kGy, and achieved complete reduction of hydrogels containing metal ion concentrations in the 10-4-10-3 M range. Metal clusters in the aerogel monoliths were characterized with optical absorption, transmission electron microscopy, X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. These techniques have shown that the clusters have a crystalline fcc structure. Au clusters consist of pure Au, while surface oxidation of Ag clusters was observed with XPS.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Piccaluga, G., Corrias, A., Ennas, G., Musinu, A., Sol-Gel Preparation and Characterization of Metal-Silica and Metal Oxide-Silica Nanocomposites, Materials Science Foundations, Trans Tech Publications (2000).Google Scholar
2. Suh, D. J.; Park, T.-J.; Lee, S.-H.; Kim, K.-L. J. of Non-Cryst. Solids 285, 309 (2001).Google Scholar
3. Leventis, N.; Elder, I. A.; Rolison, D. R.; Anderson, M. L.; Merzbacher, C. I. Chem. Mater. 11, 2837 (1999).Google Scholar
4. Woignier, T.; Reynes, J; Phalippou, J; Dussossoy, J. L.; Jacquet-Francillon, N. J. of Non-Cryst. Solids 225, 153 (1998).Google Scholar
5. Reynes, J.; Woignier, T.; Phalippou, J. J. of Non-Cryst. Solids 285, 323 (2001).Google Scholar
6. Tai, Y.; Watanabe, M.; Kaneko, K.; Tanemura, S.; Miki, T.; Murakami, J.; Tajiri, K. Adv. Mater. 13, 1611 (2001).Google Scholar
7. Anderson, M. L., Morris, C. A., Stroud, R. M., Merzbacher, C., Rolison, D. R., Langmuir 15, 674681 (1999).Google Scholar
8. Belloni, J., Mostafavi, M., Remita, H., Marignier, J.L., Delcourt, M.O., New J. Chem. 1998, 1239.Google Scholar
9. Treguer, M.; de Cointet, C.; Remita, S.; Khatouri, M.; Mostafavi, M.; Amblard, J.; Belloni, J. J. Phys. Chem. B 102, 4310 (1998).Google Scholar
10. Marignier, J. L.; Belloni, J.; Delcourt, M. O.; Chevalier, J. P. Nature 317, 344 (1985).Google Scholar
11. Remita, H.; Khatouri, M.; Treguer, M.; Amblard, J.; Belloni, J. Z. Phys. D 40, 127 (1997).Google Scholar
12. Remita, H.; Mostafavi, M.; Delcourt, M. O. Radiat. Phys. Chem. 47, 275 (1996).Google Scholar
13. Doudna, C. M.; Hund, J. H.; Bertino, M. F. Int. Jou. Mod. Phys. B. 15, 3302 (2001).Google Scholar
14. Doudna, C. M.; Bertino, M. F., Tokuhiro, A. T Langmuir, 18, 2434 (2002).Google Scholar
15. Henglein, A. Israel J. Chem. 33, 77 (1993).Google Scholar
16. Schatz, T.; Cook, A. R.; Meisel, D. J. Phys. Chem. B 102, 7225 (1998); 103, 10209 (1999).Google Scholar
17. Zacheis, G. A.; Gray, K. A.; Kamat, P. V. J. Phys. Chem. B 103, 2142 (1999).Google Scholar
18. Kreibig, U.; Gartz, M.; Hilger, A. Ber. Bunsenges. Phys. Chem. 101, 1593 (1997).Google Scholar
19. Liz-Marzan, L. M.; Giersig, M.; Mulvaney, P. Langmuir 12, 4329 (1996).Google Scholar
20. Leventis, N.; Elder, I. A.; Long, G. J.; Rolison, D. R. Nano Lett. 2, 63 (2002).Google Scholar
21. Huang, Z.-Y.; Mills, G.; Hajek, B. J. Phys. Chem. 97, 11542 (1993).Google Scholar
22. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Chastain, J., Ed.; (Perkin Elmer: Eden Prairie, MN, 1992).Google Scholar