Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T23:26:41.491Z Has data issue: false hasContentIssue false

Simulation of Carbon Nanotube Pull-outWhen Bonded to a Polymer Matrix

Published online by Cambridge University Press:  11 February 2011

S. J. V. Frankland
Affiliation:
ICASE, M/S 132C, NASA Langley Research Center, Hampton, VA 23681–2199
V. M. Harik
Affiliation:
Swales Aerospace, M/S 186A, NASA Langley Research Center, Hampton, VA 23681–2199
Get access

Abstract

A carbon nanotube pulling through a polyethylene matrix was simulated using molecular dynamics. The interfacial sliding was characterized in terms of a nanoscale friction model, which is parametrized from the molecular dynamics simulation, and involves determining the critical pull-out force on the nanotube and the effective viscosity at the nanotube/polymer interface. Comparison was made of the pull-out behavior of non-bonded and functionalized nanotube composites. Chemical bonds between the polymer and the nanotube increased the critical pullout force, the resistance to interfacial sliding, and the interfacial viscosity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Boul, P. J., Liu, J., Mickelson, E. T., Huffman, C. B., Ericson, L. M., Chiang, I. W., Smith, K. A., Colbert, D. T., Hauge, R. H., Margrave, J. L., and Smalley, R.E., Chem. Phys. Lett. 310, 367 (1999).Google Scholar
2. Chen, Y., Haddon, R. C., Fang, S., Rao, A.M., Eklund, P. C., Lee, W. H., Dickey, E. C., Grulke, E. A., Pendergrass, J. C., Chavan, A., Haley, B. E., and Smalley, R. E., J. Mat. Res. 13, 2423 (1998).Google Scholar
3. Wagner, H. D., Lourie, O., Feldman, Y., and Tenne, R., Appl. Phys. Lett. 72, 188 (1998).Google Scholar
4. Bechtel, V. T. and Sottos, N. R., Comp. Sci & Techn. 58, 1727 (1998).Google Scholar
5. Yu, M. F., Yakobson, B. I., and Ruoff, R. S., J. Phys. Chem. B 104, 8764 (2000).Google Scholar
6. Yu, M. F., Files, B. S., Arepalli, S. and Ruoff, R. S., Phys. Rev. Lett. 84, 5552 (2000).Google Scholar
7. Frankland, S. J. V., Caglar, A., Brenner, D. W., Griebel, M., J. Phys. Chem. B 106, 3046 (2002).Google Scholar
8. Frankland, S. J. V., Harik, V. M., Mat. Res. Soc. Symp. Proc. 733 E, T6.2.1 (2002).Google Scholar
9. Frankland, S. J. V., Harik, V. M., Surf. Sci. Lett. (2003), in press.Google Scholar
10. Brenner, D. W., Shenderova, O. A., Harrison, J. A., Stuart, S. J., Ni, B., and Sinnott, S. B., J. Phys C: Condensed Matter 14, 783 (2002).Google Scholar
11. Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids, (Clarendon Press, Oxford, 1987).Google Scholar
12. Harik, V. M., Experimental and Theoretical Studies of Interfacial Effects in Multiphase Media, Ph.D. Thesis, University of Delaware, Newark, DE, 1997.Google Scholar
13. Harik, V. M. and Cairncross, R. A., Mech. Mater. 32, 807 (2000).Google Scholar