Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T03:58:34.762Z Has data issue: false hasContentIssue false

Field Dependent Carrier Transport Mechanisms in Metal-Insulator–Metal Devices with Ba0.8Sr0.2TiO3/ ZrO2 Heterostructured Thin Films as the Dielectric

Published online by Cambridge University Press:  11 July 2013

Santosh K. Sahoo
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401, USA New Jersey Institute of Technology, Newark, NJ 07102, USA
H. Bakhru
Affiliation:
College of Nanoscale Science and Engineering, SUNY Albany, NY 12222, USA
Sumit Kumar
Affiliation:
Intel Corporation, 5000 W Chandler Blvd., Chandler, AZ 85226, USA
D. Misra
Affiliation:
New Jersey Institute of Technology, Newark, NJ 07102, USA
Colin A. Wolden
Affiliation:
Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
Y. N. Mohapatra
Affiliation:
Materials Science Programme, Indian Institute of Technology, Kanpur 208016, India
D. C. Agrawal
Affiliation:
Materials Science Programme, Indian Institute of Technology, Kanpur 208016, India
Get access

Abstract

Ba0.8Sr0.2TiO3/ZrO2 heterostructured thin films with different individual layer ZrO2 thicknesses are deposited on Pt/Ti/SiO2/Si substrates by a sol-gel process. The current versus voltage (I-V) measurements of the above multilayered thin films in metal-insulator-metal (MIM) device structures are taken in the temperature range of 310 to 410K. The electrical conduction mechanisms contributing to the leakage current at different field regions have been studied in this work. Various models are used to know the different conduction mechanisms responsible for the leakage current in these devices. It is observed that Poole-Frenkel mechanism is the dominant conduction process in the high field region with deep electron trap energy levels (φt) whereas space charge limited current (SCLC) mechanism is contributing to the leakage current in the medium field region with shallow electron trap levels (Et). Also, it is seen that Ohmic conduction process is the dominant mechanism in the low field region having activation energy (Ea) for the electrons. The estimated trap level energy varies from 0.2 to 1.31 eV for deep level traps and from 0.08 to 0.18 eV for shallow level traps whereas the activation energy for electrons in ohmic conduction process varies from 0.05 to 0.17 eV with the increase of ZrO2 sub layer thickness. An energy band diagram is given to explain the dominance of the various leakage mechanisms in different field regions for these heterostructured thin films.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fang, L., Shen, M., Yang, J., and Li, Z., solid state commun. 137, 381 (2006).CrossRefGoogle Scholar
Wenger, C., Albert, M., Adolphi, B., et al. ., Materials Science in Semiconductor Processing 5, 233 (2003).CrossRefGoogle Scholar
Ohishi, M., Shiraishi, M., Ochi, K., Kubozono, Y., and Kataura, H., Appl. Phys Lett. 89, 203505 (2006).CrossRefGoogle Scholar
Lin, Y. -B. and Ya-min Lee, J., J. Appl. Phys. 87, 1841 (2000).CrossRefGoogle Scholar
Weste, Neil H. E. and Harris, D., CMOS VLSI Design, A circuit and system perspective, 3 rd Edition, (Addison-Wesley, Boston, 2005).Google Scholar
Reymond, V., Michau, D., Payan, S and Maglione, M, J. Phys. Condens. Matter 16, 9155 (2004).CrossRefGoogle Scholar
Sahoo, S. K., Agrawal, D. C., Mohapatra, Y. N., Majumdar, S. B., Katiyar, R. S., Appl. Phys. Lett. 85, 5001 (2004).CrossRefGoogle Scholar
Jain, M., Majumdar, S. B., Katiyar, R. S., and Bhalla, A. S., Thin Solid Films 447, 537 (2004).CrossRefGoogle Scholar
Sze, S. M., Physics of Semiconductor Devices, 2 nd ed., Wiley-Interscience,(1981).Google Scholar
Sahoo, S. K., Misra, D., Agrawal, D. C., Mohapatra, Y. N., Majumder, S. B., and Katiyar, R. S., J. Appl. Phys. 108, 074112 (2010).CrossRefGoogle Scholar
Jain, M., Majumder, S. B., Yuzyuk, Yu. I., Katiyar, R. S., Bhalla, A.S., Miranda, F.A., Van Keuls, F.W., Ferro. Lett. Sectn. 30, 99 (2003).CrossRefGoogle Scholar
Sahoo, S. K., Patel, R. P., and Wolden, C. A., Appl. Phys. Lett. 101, 142903 (2012).CrossRefGoogle Scholar
Peng, C. –J. and Krupanidhi, S. B., IEEE, 460 (1995).Google Scholar
Wang, S. Y., CHENG, B. L., Wang, C., Dai, S.Y., Lu, H. B., Zhou, Y. L., Chen, Z. H., Yang, G. Z., Appl. Phys. A 81, 1265 (2005).CrossRefGoogle Scholar
Alimardani, N., Cowell, E. W., Wager, J. F., Conley, J. F., Evans, D. R., Chin, M., Kilpatrick, S. J., and Dubey, M., J. Vac. Sci. Technol. A 30(1), 01A113–1 (2012).CrossRefGoogle Scholar
Sahoo, S. K. and Misra, D., J. Appl. Phys. 110, 084104, (2011).CrossRefGoogle Scholar
Sahoo, S. K. and Misra, D., Appl. Phys. Lett. 100, 232903 (2012).CrossRefGoogle Scholar