Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-27T20:53:07.692Z Has data issue: false hasContentIssue false

Carbonization of Si Surface Using Hot-Filament CVD Equipment and Characterization of the Char Layer

Published online by Cambridge University Press:  28 January 2013

Kenichi Haruta
Affiliation:
Dept. Electrical and Electronic Engineering, Tokai Univ., Hiratsuka, Kanagawa, Japan.
Hideki Kimura
Affiliation:
Dept. Electrical and Electronic Engineering, Tokai Univ., Hiratsuka, Kanagawa, Japan.
Masafumi Chiba
Affiliation:
Dept. Materials Chemistry, Tokai Univ., Numazu, Shizuoka, Japan.
Get access

Abstract

To date, many studies have been carried out to investigate the use of semiconductive diamonds in industrial applications. In these studies, it has been necessary to deposit high-quality crystalline diamond thin films on large-area substrates. Hot-filament chemical vapor deposition (HFCVD) has been a useful method for generating these thin films. While large-area silicon (Si) substrates are easily obtainable and inexpensive and Si is a suitable material for the deposition of diamond thin films, because of the large mismatch of the lattice constants of Si and diamond, it is usually difficult to grow epitaxial diamond films on Si substrates. Therefore, insertion of a buffer layer comprised of a material with a lattice constant between those of Si and diamond is required. Silicon carbide (SiC), which is readily obtained by carbonization of the Si surface, is a candidate material for such a buffer layer. Therefore, in this study, a char layer was formed on a Si surface using HFCVD equipment and analyzed from various perspectives.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Uemoto, Y. and Kitabatake, M., Matsushita Technical J., 52, 63 (2006).Google Scholar
Millan, J., IET Circuits Devices Syst., 1, 372 (2007).10.1049/iet-cds:20070005CrossRefGoogle Scholar
Ohashi, H., OYO BUTURI 73, 1572 (2004).Google Scholar
Umezawa, H., Nagase, M., Kato, Y., and Shikata, S., Diamond Relat. Mater. 24, 201 (2012).10.1016/j.diamond.2012.01.011CrossRefGoogle Scholar
Stoner, B. R., Kao, C., Malta, D. M., and Glass, R. C., Appl. Phys. Lett. 62, 2347 (1993).10.1063/1.109414CrossRefGoogle Scholar
Yamanaka, S., Watanabe, H., Masai, S., Takeuchi, D., Okushi, H., and Kajimura, K., Jpn. Apll. Phys. 37, L1129 (1998).10.1143/JJAP.37.L1129CrossRefGoogle Scholar
Matsumoto, S., Sato, Y., Kamo, M., and Setaka, N., Jpn. J. Appl. Phys. 21, L183 (1982).10.1143/JJAP.21.L183CrossRefGoogle Scholar
Hirose, Y., and Terasawa, Y., Jpn. J. Appl. Phys. 25, L519 (1986).10.1143/JJAP.25.L519CrossRefGoogle Scholar
Koizumi, S., Murakami, T., and Inuzuka, T., Appl. Phys. Lett. 57, 563 (1990).10.1063/1.103647CrossRefGoogle Scholar
Tachibana, T., Yokota, Y., Miyata, K., Onishi, T., and Kobashi, K., Phys. Rev. B 56, 967 (1997).10.1103/PhysRevB.56.15967CrossRefGoogle Scholar
Jiang, X., Fryda, M., and Jia, C. L., Diamond Relat. Mater. 9, 1640 (2000).10.1016/S0925-9635(00)00326-5CrossRefGoogle Scholar
Kawarada, H., Suesada, T., and Nagasawa, H., Appl. Phys. Lett. 66, 583 (1995).10.1063/1.114020CrossRefGoogle Scholar
Haruta, K., Kimura, H., and Kurosu, T., Proc.. of The School of Engineering of Tokai Univ. Vol. 50, 45 (2010).Google Scholar
Kusunoki, I., Hiroki, M., Sato, T. Igari, Y., and Tomoda, S., Appl. Surf. Sci. 45, 171 (1990).10.1016/0169-4332(90)90001-GCrossRefGoogle Scholar
Li, J. P., and Steckl, A. J., J. Electrochem. Soc. 142, 634 (1995).10.1149/1.2044113CrossRefGoogle Scholar