Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T12:40:14.163Z Has data issue: false hasContentIssue false

Time-of-Flight Technique Limits of Applicability for Thin-Films of Π-Conjugated Polymers

Published online by Cambridge University Press:  14 February 2012

Marco R. Cavallari
Affiliation:
Escola Politécnica da Universidade de São Paulo (EPUSP), Departamento de Engenharia de Sistemas Eletrônicos. Av. Prof. Luciano Gualberto, trav. 3, n. 158, Cidade Universitária São Paulo, SP 05508-900, Brasil
Vinicius R. Zanchin
Affiliation:
Escola Politécnica da Universidade de São Paulo (EPUSP), Departamento de Engenharia de Sistemas Eletrônicos. Av. Prof. Luciano Gualberto, trav. 3, n. 158, Cidade Universitária São Paulo, SP 05508-900, Brasil
Cleber A. Amorim
Affiliation:
Departamento de Física, UFSCar, CP 676 São Carlos, SP 13565-905, Brasil
Gerson dos Santos
Affiliation:
Escola Politécnica da Universidade de São Paulo (EPUSP), Departamento de Engenharia de Sistemas Eletrônicos. Av. Prof. Luciano Gualberto, trav. 3, n. 158, Cidade Universitária São Paulo, SP 05508-900, Brasil
Fernando J. Fonseca
Affiliation:
Escola Politécnica da Universidade de São Paulo (EPUSP), Departamento de Engenharia de Sistemas Eletrônicos. Av. Prof. Luciano Gualberto, trav. 3, n. 158, Cidade Universitária São Paulo, SP 05508-900, Brasil
Adnei M. Andrade
Affiliation:
Instituto de Eletrotécnica e Energia, USP. Av. Prof. Luciano Gualberto, 1289, Butantã São Paulo, SP 05508-970, Brasil
Sergio Mergulhão*
Affiliation:
Departamento de Física, UFSCar, CP 676 São Carlos, SP 13565-905, Brasil
*
*Phone 1: +551633518222; Phone 2: +551633518226; E-mail: dsme@df.ufscar.br
Get access

Abstract

Time of flight (ToF) is the most straightforward technique to determine polymeric semiconductor mobility for electronic applications. We demonstrate ToF limits of applicability to amorphous PPV derivatives, such as poly[2-methoxy-5-(3’,7’-dimethylloctyloxy)-1-4-phenylene vinylene] (MDMO-PPV) and poly[2-methoxy-5-(2’-ethylhexyloxy)-1-4-phenylene vinylene] (MEH-PPV), and polycrystalline poly(3-hexylthiophene) (P3HT). Hole and electron mobility (μ) in submicrometric films (200 – 500 nm) is overestimated compared to casted layers, due to reduced absorption capability, which is confirmed by Charge Extraction by Linearly Increasing Voltage (CELIV) measurements. Charge transport properties in nanometric films, such as for Field-Effect Transistors (FET), can not be studied by current-mode ToF. Hole mobility of ca. 10-5 cm2/Vs with Poole-Frenkel behavior for PPV derivatives and 10-3 cm2/Vs for P3HT is at least one order of magnitude higher than ToF results.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tuladhar, S. M., Poplavskyy, D., Choulis, S. A., Durrant, J. R., Bradley, D. D. C. and Nelson, J., Adv. Funct. Mater. 15, 11711182 (2005).Google Scholar
2. Dennler, G., Mozer, A., Juška, G., Pivrikas, A., Österbacka, R., Fuchsbauer, A. and Sariciftci, N.S., Org. Electron. 7, 229234 (2006).Google Scholar
3. Warta, W. and Karl, N., Phys. Rev. B 32, 11721182 (1984).Google Scholar
4. Juška, G., Arlauskas, K., Österbacka, R. and Stubb, H., Synth. Met. 109, 173176 (2000).Google Scholar
5. Juška, G., Genevičius, K., Arlauskas, K., Österbacka, R. and Stubb, H., Phys. Rev. B 65, 233208(2002).Google Scholar
6. Briseno, A. L., Mannsfeld, S. C. B., Ling, M. M., Liu, S., Tseng, R. J., Reese, C., Roberts, M. E., Yang, Y., Wudl, F. and Bao, Z., Nature 444, 913917 (2006).Google Scholar
7. Lobo, R. F. M., Pereira-da-Silva, M. A., Raposo, M., Faria, R. M. and Oliveira, O. N. Jr., Nanotechnology 10, 389393 (1999).Google Scholar
8. Gambino, S., Bansal, A. K. and Samuel, I. D. W., Org. Electron. 11, 467 (2010).Google Scholar
9. Choulis, S. A., Nelson, J., Kim, Y., Poplavskyy, D., Kreouzis, T., Durrant, J. R. and Bradley, D. D. C., Appl. Phys. Lett. 83, 3812 (2003).Google Scholar
10. Scher, H. and Montroll, E., Phys. Rev. B 12, 2455 (1975).Google Scholar
11. Murgatroyd, P. N., J. Phys. D: Appl. Phys. 3, 151 (1970).Google Scholar
12. Santos, L. F., Faria, R. M., de Andrade, A. R., Faria, G. C., Amorin, C. A. and Mergulhão, S., Thin Solid Films 515, 8034 (2007).Google Scholar
13. Campbell, A. J., Bradley, D. D. C. and Lidzey, D. G., J. Appl. Phys. 82, 6326 (1997).Google Scholar
14. Bozano, L., Carter, S. A., Scott, J. C., Malliaras, G. G. and Brock, P. J., Appl. Phys. Lett. 74, 1132 (1999).Google Scholar
15. Mozer, A. J., Sariciftci, N. S., Pivrikas, A., Österbacka, R., Juška, G., Brassat, L. and Bässler, H., Phys. Rev. B 71, 035214 (2005).Google Scholar
16. Pivrikas, A., Sariciftci, N. S., Juška, G. and Österbacka, R., Prog. Photovolt: Res. Appl. 15, 677 (2007).Google Scholar
17. Tanase, C., Meijer, E. J., Blom, P. W. M. and de Leeuw, D. M., Phys. Rev. Lett. 91, 216601 (2003).Google Scholar
18. Amorim, C. A., Cavallari, M. R., Santos, G., Fonseca, F. J., Andrade, A. M. and Mergulhão, S., J. Non-Cryst. Sol. 358, 484491 (2012).Google Scholar