Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T07:34:07.878Z Has data issue: false hasContentIssue false

Dynamics of Graphene Nanodrums

Published online by Cambridge University Press:  02 March 2011

Gustavo Brunetto*
Affiliation:
Departamento de Física Aplicada, Unicamp, 13083-859 Campinas, Sao Paulo, Brazil.
Sergio B. Legoas
Affiliation:
Departamento de Física, Universidade Federal de Roraima, 69304-000 Boa Vista, Roraima, Brazil.
Vitor R. Coluci
Affiliation:
Faculdade de Tecnologia, Unicamp, 13484-370 Limeira, Sao Paulo, Brazil.
Liacir S. Lucena
Affiliation:
Departamento de Física, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, Brazil.
Douglas S. Galvao
Affiliation:
Departamento de Física Aplicada, Unicamp, 13083-859 Campinas, Sao Paulo, Brazil.
*
*Corresponding author: gusbru@ifi.unicamp.br
Get access

Abstract

Recently, it was proposed that graphene sheets deposited on silicon oxide can act as impermeable atomic membranes to standard gases, such as helium, argon, and nitrogen. It is assumed that graphene membrane is clamped over the surface due only to van der Waals forces. The leakage mechanism can be experimentally addressed only indirectly. In this work we have carried out molecular dynamics simulations to study this problem. We have considered nano-containers composed of a chamber of silicon oxide filled with gas and sealed by single and multi-layer graphene membranes. The obtained results are in good qualitative agreement with the experimental data. We observed that the graphene membranes remain attached to the substrate for pressure values up to two times the largest value experimentally investigated. We did not observe any gas leakage through the membrane/substrate interface until the critical limit is reached and then a sudden membrane detachment occurs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., Science 306, 666 (2004).Google Scholar
2. Frank, I. W., Tanenbaum, D. M., van der Zande, A. M., and McEuen, P. L., J. Vac. Sci. Technol. B 25, 2558 (2007).Google Scholar
3. Faccio, R., Denis, P.A., Pardo, H., Goyenola, C., and Mombrú, A. W., J. Phys.: Condens. Matt. 21, 285304 (2009).Google Scholar
4. Geim, A. K. and Novoselov, K. S., Nature Materials 6, 183 (2007).Google Scholar
5. Cadelano, E., Palla, P. L., Giordano, S., and Colombo, L., Phys. Rev. Lett. 102, 235502 (2009).Google Scholar
6. Lee, C., Wei, X., Kysar, J. W., and Hone, J., Science 321, 385 (2008).Google Scholar
7. Bunch, J. S., Verbridge, S. S., Alden, J. S., van der Zande, A. M., Parpia, J. M., Craighead, H. G., and McEuen, P. L., Nano Lett. 8, 2458–62 (2008).10.1021/nl801457bGoogle Scholar
8. MacKerell, A. D., Bashford, D., Bellot, M., Dunbrack, R. L., Evanseck, J., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph, D., Kuchnir, L., Kuczera, K., Lau, F. T. K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., Reiher, I. W. E., Roux, B., Schlenkrich, M., Smith, J., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., and Karplus, M., J. Phys. Chem. B 102, 3586 (1998).Google Scholar
9. Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kale, L., and Schulten, K., J. Comput. Chem. 26, 1781 (2005). NAMD, http://www.ks.uiuc.edu/Research/namd/.Google Scholar
10. Stone, J. E., Phillips, J. C., Freddolino, P. L., Hardy, D. J., Trabuco, L. G., and Schulten, K., J. Comput. Chem. 28, 2618 (2007).10.1002/jcc.20829Google Scholar
11. Brunetto, G., Legoas, S. B., Coluci, V. R., Lucena, L. S., and Galvao, D. S., to be published .Google Scholar