Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-28T20:19:47.668Z Has data issue: false hasContentIssue false

Nonlinear Mechanical Properties of Graphene Nanoribbons

Published online by Cambridge University Press:  02 March 2011

Qiang Lu
Affiliation:
Department of Aerospace Engineering and Engineering Mechanics, University of Texas, Austin, Texas 78712, USA
Rui Huang
Affiliation:
Department of Aerospace Engineering and Engineering Mechanics, University of Texas, Austin, Texas 78712, USA
Get access

Abstract

Based on atomistic simulations, the nonlinear elastic properties of monolayer graphene nanoribbons under quasistatic uniaxial tension are predicted, emphasizing the effect of edge structures (armchair and zigzag, without and with hydrogen passivation). The results of atomistic simulations are interpreted using a theoretical model of thermodynamics, which enables determination of the nonlinear functions for the strain-dependent edge energy and the hydrogen adsorption energy, for both zigzag and armchair edges. Due to the edge effects, the initial Young’s modulus of graphene nanoribbons under infinitesimal strain varies with the edge chirality and the ribbon width. Furthermore, it is found that the nominal strain to fracture is considerably lower for armchair graphene nanoribbons than for zigzag ribbons. Two distinct fracture mechanisms are identified, with homogeneous nucleation for zigzag ribbons and edge-controlled heterogeneous nucleation for armchair ribbons.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Berger, C., et al. , Science 312, 11911196 (2006).Google Scholar
2. Ozyilmaz, B., et al. , Phys. Rev. Lett. 99, 166804 (2007).Google Scholar
3. Lin, Y. M., et al. , Phys. Rev. B 78, 161409R (2008).Google Scholar
4. Li, X. L., et al. , Science 319, 12291232 (2008).Google Scholar
5. Nakada, K., Fujita, M., Dresselhaus, G., Dresselhaus, M. S., Phys. Rev. B 54, 1795417961 (1996).Google Scholar
6. Son, Y.-W., Cohen, M. L., Louie, S. G., Phys. Rev. Lett. 97, 216803 (2006).Google Scholar
7. Barone, V., Hod, O., Scuseria, G. E., Nano Lett. 6, 27482754 (2006).Google Scholar
8. Dutta, S., Lakshmi, S., Pati, S. K., Phys. Rev. B 77, 073412 (2008).Google Scholar
9. Shenoy, V. B., Reddy, C. D., Ramasubramaniam, A., Zhang, Y. W., Phys. Rev. Lett. 101, 245501 (2008).Google Scholar
10. Bets, K. V., Yakobson, B. I., Nano Research 2, 161166 (2009).Google Scholar
11. Reddy, C. D., Ramasubramaniam, A., Shenoy, V. B., Zhang, Y. W., Appl. Phys. Lett. 94, 101904 (2009).Google Scholar
12. Zhao, H., Min, K., Aluru, N. R., Nano Lett. 9, 30123015 (2009).Google Scholar
13. Bu, H., et al. , Phys. Lett. A 373, 33593362 (2009).Google Scholar
14. Xu, Z. P., J. Computational and Theoretical Nanoscience 6, 625628 (2009).Google Scholar
15. Faccio, R., Denis, P. A., Pardo, H., Goyenola, C., Mombru, A. W., J. Phys.: Condens. Matter 21, 285304 (2009).Google Scholar
16. Topsakal, M., Ciraci, S., Phys. Rev. B 81, 024107 (2010).Google Scholar
17. Gan, C. K., Srolovitz, D. J., Phys. Rev. B 81, 125445 (2010).Google Scholar
18. Lu, Q., Huang, R., Phys. Rev. B 81, 155410 (2010).Google Scholar
19. Liu, F., Ming, P. M., Li, J., Phys. Rev. B 76, 064120 (2007).Google Scholar
20. Wei, X., Fragneaud, B., Marianetti, C. A., Kysar, J. W., Phys. Rev. B 80, 205407 (2009).Google Scholar
21. Lu, Q., Huang, R., Int. J. Appl. Mech. 1, 443467 (2009).Google Scholar
22. Lee, C., Wei, X., Kysar, J. W., Hone, J., Science 321, 385388 (2008).Google Scholar
23. Koskinen, P., Malola, S., Hakkinen, H., Phys. Rev. Lett. 101, 115502 (2008).Google Scholar
24. Jia, X., et al. , Science 323, 17011705 (2009).10.1126/science.1166862Google Scholar
25. Yu, M. F., Lourie, O., Dyer, M. J., Moloni, K., Kelly, T. F., Ruoff, R. S., Science 287, 637640 (2000).Google Scholar
26. Brenner, D. W., Shenderova, O. A., Harrison, J. A., Stuart, S. J., Ni, B., Sinnott, S. B., J. Phys. Condens. Mat. 14, 783802 (2002).Google Scholar
27. Arroyo, M., Belytschko, T., Phys. Rev. B. 69, 115415 (2004).Google Scholar
28. Zhou, J., Huang, R., J. Mech. Phys. Solids 56, 16091623 (2008).Google Scholar