Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-18T10:49:24.457Z Has data issue: false hasContentIssue false

In-situ Observations of Restructuring Carbon Nanotubes via Low-voltage Aberration-corrected Transmission Electron Microscopy

Published online by Cambridge University Press:  01 March 2011

Felix Börrnert
Affiliation:
Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden e. V., PF 270116, 01171 Dresden, Germany
Alicja Bachmatiuk
Affiliation:
Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden e. V., PF 270116, 01171 Dresden, Germany
Sandeep Gorantla
Affiliation:
Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden e. V., PF 270116, 01171 Dresden, Germany
Jamie H. Warner
Affiliation:
University of Oxford, Parks Road, Oxford OX13PH, United Kingdom
Bernd Büchner
Affiliation:
Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden e. V., PF 270116, 01171 Dresden, Germany
Mark H. Rümmeli
Affiliation:
Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden e. V., PF 270116, 01171 Dresden, Germany Technische Universität Dresden, 01062 Dresden, Germany
Get access

Abstract

The molecular structure and dynamics of carbon nanostructures is much discussed throughout the literature, mostly from the theoretical side because of a lack of suitable experimental techniques to adequately engage the problem. A technique that has recently become available is low-voltage aberration-corrected transmission electron microscopy. It is a valuable tool with which to directly observe the atomic structure and dynamics of the specimen in situ. Time series aberration-corrected low-voltage transmission electron microscopy is used to study the dynamics of single-wall carbon nanotubes in situ. We confirm experimentally previous theoretical predictions for the agglomeration of adatoms forming protrusions and subsequent removal. A model is proposed how lattice reconstruction sites spread. In addition, the complete healing of a multi-vacancy consisting of ca. 20 missing atoms in a nanotube wall is followed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Avouris, P., Acc. Chem. Res. 35, 1026 (2002).Google Scholar
2. Charlier, J.-C., Acc. Chem. Res. 35, 1063 (2002).Google Scholar
3. Krasheninnikov, A. V. and Nordlund, K., J. Appl. Phys. 107, 071301 (2010).Google Scholar
4. Smith, B. W. and Luzzi, D. E., J. Appl. Phys. 90, 3509 (2001).Google Scholar
5. Meyer, J. C., Chuvilin, A., and Kaiser, U. in Materials Science, edited by Grogger, W., Hofer, F., and Pölt, P., ( MC2009 , Verlag der Technischen Universität Graz, Graz, 2009) pp. 347348.Google Scholar
6. Warner, J. H., Schäffel, F., Zhong, G., Rümmeli, M. H., Büchner, B., Robertson, J., and Briggs, G. A. D., ACS Nano 3, 1557 (2009).Google Scholar
7. del Valle, M., Gutiérrez, R., Tejedor, C., and Cuniberti, G., Nature Nanotechnol. 2, 176 (2007).Google Scholar
8. Börrnert, F., Börrnert, C., Gorantla, S., Liu, X., Bachmatiuk, A., Joswig, J.-O., Wagner, F. R., Schäffel, F., Warner, J. H., Schönfelder, R., Rellinghaus, B., Gemming, T., Thomas, J., Knupfer, M., Büchner, B., and Rümmeli, M. H., Phys. Rev. B 81, 085439 (2010).Google Scholar
9. Ding, F., Jiao, K., Lin, Y., and Yakobson, B. I., Nano Lett. 7, 681 (2007).Google Scholar
10. Rodriguez-Manzo, J. A. and Banhart, F., Nano Lett. 9, 2285 (2009).Google Scholar
11. Börrnert, F., Gorantla, S., Bachmatiuk, A.,, Warner, J. H., Ibrahim, I., Thomas, J., Gemming, T., Eckert, J., Cuniberti, G., Büchner, B., and Rümmeli, M. H., Phys. Rev. B 81, 201401(R) (2010).Google Scholar
12. Rümmeli, M. H., Kramberger, C., Löffler, M., Jost, O., Bystrzejewski, M., Grüneis, A., Gemming, T., Pompe, W., Büchner, B., and Pichler, T., J. Phys. Chem. B 111, 8234 (2007).Google Scholar
13. Hashimoto, A., Suenaga, K., Gloter, A., Urita, K., and Iijima, S., Nature (London) 430, 870 (2004).Google Scholar
14. Stadelmann, P. A., Ultramicroscopy 21, 131 (1987).Google Scholar
15. Tsetseris, L. and Pantelides, S. T., Carbon 47, 901 (2009).Google Scholar