Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-28T15:31:27.364Z Has data issue: false hasContentIssue false

Plasma-enhanced chemical vapor deposition of carbon nanotubes using alcohol vapor

Published online by Cambridge University Press:  01 February 2011

Atsushi Okita
Affiliation:
okita@mars-ei.eng.hokudai.ac.jp, Hokkaido Univ., Laboratory of Integrated Material Processings, Graduate School of Information Science and Technology, N14 W9, Kita-ku, Sapporo, 060-0814, Japan, +81-11-706-6519, +81-11-706-6482
Yoshiyuki Suda
Affiliation:
suda@ist.hokudai.ac.jp, Hokkaido Univ., Laboratory of Integrated Material Processings, Graduate School of Information Science and Technology, N14 W9, Kita-ku, Sapporo, 060-0814, Japan
Masayuki Maekawa
Affiliation:
maekawa@mars-ei.eng.hokudai.ac.jp, Hokkaido Univ., Laboratory of Integrated Material Processings, Graduate School of Information Science and Technology, N14 W9, Kita-ku, Sapporo, 060-0814, Japan
Junichi Takayama
Affiliation:
takayama@mars-ei.eng.hokudai.ac.jp, Hokkaido Univ., Laboratory of Integrated Material Processings, Graduate School of Information Science and Technology, N14 W9, Kita-ku, Sapporo, 060-0814, Japan
Akinori Oda
Affiliation:
aknr.oda@nitech.ac.jp, Nagoya Institute of Technology, Graduate School of Engineering, Gokiso-cho, Showa-ku,, Nagoya, 466-8555, Japan
Hirotake Sugawara
Affiliation:
sugawara@ist.hokudai.ac.jp, Hokkaido Univ., Laboratory of Integrated Material Processings, Graduate School of Information Science and Technology, N14 W9, Kita-ku, Sapporo, 060-0814, Japan
Yosuke Sakai
Affiliation:
sakaiy@ist.hokudai.ac.jp, Hokkaido Univ., Laboratory of Integrated Material Processings, Graduate School of Information Science and Technology, N14 W9, Kita-ku, Sapporo, 060-0814, Japan
Get access

Abstract

We have successfully grown carbon nanotubes (CNTs) by alcohol plasma-enhanced chemical vapor deposition (PECVD). When 0.01 wt% ferrocene was added to alcohol, vertically-aligned CNTs could be grown using RF (= 13.56 MHz) plasma at 650°C. In contrast, no CNTs were obtained by pure alcohol PECVD. To understand the plasma properties for CNT growth, especially plasma species containing a gas phase of alcohol plasma, we analyzed the plasma using optical emission spectroscopy (OES) and quadrupole mass spectrometry (QMS). From the OES measurement, one could identify the emission peaks from the excitation states of CHO, CO, C2, O2, H, CH+, and H2O+, while the QMS measurement also showed the existence of CO, H2O, and CxHy (x≥2, y≥2). It is considered that such plasma species affect CNT growth by changing the oxidation state of the catalyst or by adjusting the amount of precursor species in the plasma. Comparing this PECVD experiment with thermal alcohol CVD (without plasma), only PECVD can be used to grow CNTs under the reported experimental conditions. It is considered that thermal alcohol CVD requires more energy to grow CNTs because 650°C is a little lower than the temperature required for CNT growth. These results indicate that in alcohol plasma, the active species produced by decomposition and recombination reactions have a possibility to promote/suppress CNT growth depending on the process conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kreupl, F., Graham, A. P., Duesberg, G. S., Steinhogl, W., Liebau, M., Unger, E., and Honlein, W., Microelectron Eng. 64, 399408 (2002).Google Scholar
2. Bae, E. J., Min, Y. S., Kang, D., Ko, J. H., and Park, W., Chem. Mater. 17, 51415145 (2005).Google Scholar
3. Ren, Z. F., Huang, Z. P., Xu, J. W., Wang, J. H., Bush, P., Siegal, M. P., and Provencio, P. N., Science 282, 11051107 (1998).Google Scholar
4. Kato, T., Jeong, G. H., Hirata, T., Hatakeyama, R., Tohji, K., and Motomiya, K., Chem. Phys. Lett. 83, 422426 (2003).Google Scholar
5. Meyyappan, M., Delzeit, L., Cassell, A., Hash, D., Plasma Sources Sci. Technol. 12, 205216 (2003).Google Scholar
6. Denysenko, I., and Ostrikov, K., Appl. Phys. Lett. 90, 251501 (2007).Google Scholar
7. Zhang, G., D Mann, Zhang, L., Javey., A. Li, Y., Yenilmez, E., Wang, Q., McVittie, J. P., Nishi, Yoshio, Gibbons, J., and Dai, H., PNAS 102, 1614116145 (2005).Google Scholar
8. Zhong, G., Iwasaki, T., Honda, K., Furukawa, Y., Ohdomari, I., and Kawarada, H., Chem. Vapor Deposition 11, 127130 (2005).Google Scholar
9. Okita, A., Ozeki, A., Suda, Y., Nakamura, J., Oda, A., Bhattacharyya, K., Sugawara, H., and Sakai, Y., Jpn. J. Appl. Phys. 45, 83238329 (2006).Google Scholar
10. Okita, A., Suda, Y., Ozeki, A., Sugawara, H., Sakai, Y., Oda, A., and Nakamura, J. J. Appl. Phys. 99, 014302 (2006).Google Scholar
11. Okita, A., Suda, Y., Oda, A., Nakamura, J., Ozeki, A., Bhattacharyya, K., Sugawara, H., and Sakai, Y., Carbon 45, 15181526 (2007).Google Scholar
12. Murakami, Y., Chiashi, S., Miyauchi, Y., and Maruyama, S., Jpn. J. Appl. Phys. 43, 12211226 (2004).Google Scholar
13. Chiashi, S., Murakami, Y., Miyauchi, Y., and Maruyama, S., Chem. Phys. Lett. 386, 8994 (2004).Google Scholar
14. Yanguas-Gil, A., Hueso, J. L., Cotrino, J., Caballero, A., and Gonzalez-Elipe, A. R., Appl. Phys. Lett. 85, 40044006 (2004).Google Scholar
15. Aubry, O., Met, C., Khacef, A., and Cormier, J. M., Chem. Eng. Journal 106, 241247 (2005).Google Scholar
16. Izake, E. L., Paulmier, T., Bell, J. M., and Fredericks, P. M., J. Mater. Chem. 15, 300306 (2005).Google Scholar
17. Park, J., Zhu, R. S., and Lin, M. C., J. Chem. Phys. 117, 32243231 (2002).Google Scholar
18. Hata, K., Futaba, D. N., Mizuno, K., Namai, T., Yumura, M., Iijima, S., Science 306, 13621364 (2004).Google Scholar
19. Maruyama, S., Kojima, R., Miyauchi, Y., Chiashi, S., and Kohno, M., Chem. Phys. Lett. 360, 229234 (2002).Google Scholar