Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-17T21:51:38.527Z Has data issue: false hasContentIssue false

MgB2, a two-gap superconductor for practical applications

Published online by Cambridge University Press:  16 August 2011

Marina Putti
Affiliation:
CNR-SPIN and Dipartimento di Fisica, Università di Genova via Dodecaneso 33, 16146 Genova, Italy; e-mail putti@fisica.unige.it
Giovanni Grasso
Affiliation:
Columbus Superconductors SpA, Via delle Terre Rosse 30, 16133 Genova, Italy; grasso.gianni@clbs.it
Get access

Abstract

The history of superconductivity in MgB2 has been short, but intense. Ten years after its discovery, the two-gap mechanism of superconductivity in MgB2 has been mastered to a considerable extent while developing its superconducting properties in wires that meet the technical and economic requirements of industrial applications. The hope for dry superconductivity (i.e., without any liquid cryogen) using this simple and low-cost material has been recently fulfilled, with current commercial availability of MgB2-based dry MRI machines. We expect that scientific progress in understanding and developing MgB2 conductors will continue, strengthening the base for further deployment of MgB2 in applications. This article presents the main scientific and technical highlights of MgB2, describing its two-gap superconductivity, progress in improving its superconducting properties, the advances toward making MgB2 a fully recognized practical superconductor, and its prospects for ongoing and upcoming applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Nakamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., Akimitsu, J., Nature 410, 63 (2001).Google Scholar
2.Larbalestier, D.C., Cooley, L.D., Rikel, M.O., Polyanskii, A.A., Jiang, J., Patnaik, S., Cai, X.Y., Feldmann, D.M., Gurevich, A., Squitieri, A.A., Naus, M.T., Eom, C.B., Hellstrom, E.E., Cava, R.J., Regan, K.A., Rogado, N., Hayward, M.A., He, T., Slusky, J.S., Khalifah, P., Inumaru, K., Haas, M., Nature 410, 186 (2001).Google Scholar
3.Grasso, G., Malagoli, A., Ferdeghini, C., Roncallo, S., Braccini, V., Siri, A.S., Cimberle, M.R., Appl. Phys. Lett. 79, 230 (2001).Google Scholar
4.Eisterer, M., Supercond. Sci. Technol. 22, 095011 (2009).Google Scholar
5.Braccini, V., Braccini, V., Gurevich, A., Giencke, J.E., Jewell, M.C., Eom, C.B., Larbalestier, D.C., Pogrebnyakov, A., Cui, Y., Liu, B.T., Hu, Y.F., Redwing, J.M., Li, Q., Xi, X.X., Singh, R.K., Gandikota, R., Kim, J., Wilkens, B., Newman, N., Rowell, J., Moeckly, B., Ferrando, V., Tarantini, C., Marré, D., Putti, M., Ferdeghini, C., Vaglio, R., Haanappel, E., Phys. Rev. B 71, 012504 (2005).Google Scholar
6.Xi, X.X., Rep. Prog. Phys. 71, 116501 (2008).Google Scholar
7.Moshchalkov, V., Menghini, M., Nishio, T., Chen, Q.H., Silhanek, A.V., Dao, V.H., Chibotaru, L.F., Zhigadlo, N.D., Karpinski, J., Phys. Rev. Lett. 102, 117001 (2009).Google Scholar
8.Putti, M., Braccini, V., Ferdeghini, C., Pallecchi, I., Siri, A.S., Gatti, F., Manfrinetti, P., Palenzona, A., Phys. Rev. B 70, 052509 (2004).Google Scholar
9.Kortus, J., Dolgov, O.V., Kremer, R.K., Golubov, A.A., Phys. Rev. Lett. 94, 027002 (2005).Google Scholar
10.Putti, M., Vaglio, R., Rowell, J.M., Supercond. Sci. Technol. 21, 043001 (2008).Google Scholar
11.Putti, M., Brotto, P., Monni, M., Galleani d’Agliano, E., Sanna, A., Massidda, S., Europhys. Lett. 77, 57005 (2007).Google Scholar
12.Collings, E.W., Sumption, M.D., Bhatia, M., Susner, M.A., Bohnenstiehl, S.D., Supercond. Sci. Technol. 21, 103001 (2008).Google Scholar
13.Gurevich, A., Physica C 456, 160 (2007).Google Scholar
14.Brotto, P.Pallecchi, I., Putti, M., Galleani D’Agliano, E., Phys. Rev. B 82, 134512 (2010).Google Scholar
15.Zhu, Y., Zhu, Y., Pogrebnyakov, A.V., Wilke, R.H., Chen, K., Xi, X.X., Redwing, J.M., Zhuang, C.G., Feng, Q.R., Gan, Z.Z., Singh, R.K., Shen, Y., Newman, N., Rowell, J.M., Hunte, F., Jaroszynski, J., Larbalestier, D.C., Baily, S.A., Balakirev, F.F., Voyles, P.M., Supercond. Sci. Technol. 23, 095008 (2010).Google Scholar
16.Wilke, R.H.T., Bud’ko, S.L., Canfield, P.C., Finnemore, D.K., Suplinskas, R.J., Hannahs, S.T., Phys. Rev. Lett. 92, 217003 (2004).Google Scholar
17.Matsumoto, A., Kumakura, H., Kitaguchi, H., Senkowicz, B.J., Jewell, M.C., Hellstrom, E.E., Zhu, Y., Voyles, P.M., Larbalestier, D.C., Appl. Phys. Lett. 89, 132508 (2006).Google Scholar
18.Sumption, M.D., Bhatia, M., Rindfleisch, M., Tomsic, M., Soltanian, S., Dou, S.X., Collings, E.W., Appl. Phys. Lett. 86, 092507 (2005).Google Scholar
19.Serquis, A., Serrano, G., Moreno, S.M., Civale, L., Maiorov, B., Balakirev, F., Jaime, M., Supercond. Sci. Technol. 20, L12 (2007).Google Scholar
20.Gao, Z., Ma, Y., Zhang, X., Wang, D., Yu, Z., Watanabe, K., Yang, H., Wen, H., Supercond. Sci. Technol. 20, 485 (2007).Google Scholar
21.Senkowicz, B.J., Giencke, J.E., Patnaik, S., Eom, C.B., Hellstrom, E.E., Larbalestier, D.C., Appl. Phys. Lett. 86, 202502 (2005).Google Scholar
22.Ma, Y., Zhang, X., Awaji, S., Wang, D., Gao, Z., Nishijima, G., Watanabe, K., Supercond. Sci. Technol. 20, L5 (2007).Google Scholar
23.Kim, J.H., Zhou, S., Hossain, M.S.A., Pan, A.V., Dou, S.X., Appl. Phys. Lett. 89, 142505 (2006).Google Scholar
24.Braccini, V., Nardelli, D., Penco, R., Grasso, G., Physica C 456, 209 (2007).Google Scholar
25.Flukiger, R., Lezza, P., Cesaretti, M., Senatore, C., Gladyshevskii, R., IEEE Trans. Appl. Supercond. 17, 2846 (2007).Google Scholar
26.Matsumoto, A., Kobayashi, Y., Takahashi, K.-I., Kumakura, H., Kitaguchi, H., Appl. Phys. Express 1, 021702 (2008).Google Scholar
27.Tarantini, C., Aebersold, H.U., Bernini, C., Braccini, V., Ferdeghini, C., Gambardella, U., Lehmann, E., Manfrinetti, P., Palenzona, A., Pallecchi, I., Vignolo, M., Putti, M., Physica C 463465, 211 (2007).Google Scholar
28.Senkowicz, B.J., Mungall, R.J., Zhu, Y., Jiang, J., Voyles, P.M., Hellstrom, E.E., Larbalestier, D.C., Supercond. Sci. Technol. 21, 035009 (2008).Google Scholar
29.Romano, G., Vignolo, M., Braccini, V., Malagoli, V., Bernini, A.C., Tropeano, M., Fanciulli, C., Putti, M., Ferdeghini, C., IEEE Trans. Appl. Supercond. 19, 2706 (2009).Google Scholar
30.Rowell, J.M., Supercond. Sci. Technol. 16, R17 (2003).Google Scholar
31.Yamamoto, A., Shimoyama, J.-I., Kishio, K., Matsushita, T., Supercond. Sci. Technol. 20, 658 (2007).Google Scholar
32.Jiang, J., Senkowicz, B.J., Larbalestier, D.C., Hellstrom, E.E., Supercond. Sci. Technol. 19, L33 (2006).Google Scholar
33.Vignolo, M., Romano, G., Malagoli, A., Braccini, V., Tropeano, M., Bellingeri, E., Fanciulli, C., Bernini, C., Honkimaki, V., Putti, M., Ferdeghini, C., IEEE Trans. Appl. Supercond. 19, 2718 (2009).Google Scholar
34.Jin, S., Mavoori, H., Bower, C., van Dover, R.B., Nature 411, 563 (2001).Google Scholar
35.Tomsic, M., Rindfleisch, M., Yue, J., McFadden, K., Doll, D., Phillips, J., Sumption, M.D., Bhatia, M., Bohnenstiehl, S., Collings, E.W., Physica C 456, 203 (2007).Google Scholar
36.Razeti, M., Angius, S., Bertora, L., Damiani, D., Marabotto, R., Modica, M., Nardelli, D., Perrella, M., Tassisto, M., IEEE Trans. Appl. Supercond. 18, 882 (2008).Google Scholar
37.Yao, W., Bascun, J., Kim, W.-S., Hahn, S., Lee, H., Iwasa, Y., IEEE Trans. Appl. Supercond. 18, 91 (2008).Google Scholar
38.Magnusson, N., Runde, M., J. Phys. Conf. Ser. 43, 1019 (2006).Google Scholar
39.Stenvall, A., Magnusson, N., Jelinek, Z., Grasso, G., Hiltunen, I., Korpela, A., Lehtonen, J., Mikkonen, R., Runde, M., Physica C 468, 487 (2008).Google Scholar
40.Suhl, H., Matthias, B.T., Walker, L.R., Phys. Rev. Lett. 3, 552 (1959).Google Scholar
41.Dolgov, O.V., Kremer, R.K., Kortus, J., Golubov, A.A., Shulga, S.V., Phys. Rev. B 72, 024504 (2005).Google Scholar