Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T04:59:06.245Z Has data issue: false hasContentIssue false

Screen-printed organic electrochemical transistors for metabolite sensing

Published online by Cambridge University Press:  22 July 2015

Gaëtan Scheiblin
Affiliation:
Université Grenoble Alpes, F-38000 Grenoble, France CEA, LETI, MINATEC Campus, F-38054 Grenoble, France Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France
Abdelkader Aliane
Affiliation:
Université Grenoble Alpes, F-38000 Grenoble, France CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
Xenofon Strakosas
Affiliation:
Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France
Vincenzo F. Curto
Affiliation:
Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France
Romain Coppard
Affiliation:
Université Grenoble Alpes, F-38000 Grenoble, France CEA, LITEN, F-38054 Grenoble, France
Gilles Marchand
Affiliation:
Université Grenoble Alpes, F-38000 Grenoble, France CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
Roísín M. Owens*
Affiliation:
Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France
Pascal Mailley*
Affiliation:
Université Grenoble Alpes, F-38000 Grenoble, France CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
George G. Malliaras*
Affiliation:
Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France
*
Address all correspondence Roísín M. Owens, Pascal Mailley, George G. Malliaras atowens@emse.fr, malliaras@emse.fr, and pascal.mailley@cea.fr
Address all correspondence Roísín M. Owens, Pascal Mailley, George G. Malliaras atowens@emse.fr, malliaras@emse.fr, and pascal.mailley@cea.fr
Address all correspondence Roísín M. Owens, Pascal Mailley, George G. Malliaras atowens@emse.fr, malliaras@emse.fr, and pascal.mailley@cea.fr
Get access

Abstract

Screen-printed organic electrochemical transistors (OECTs) were tested as glucose and lactate sensors. The intrinsic amplification of the device allowed it to detect metabolites in low molecular range and validation tests were made on real human sweat. The development of an organically modified sol–gel solid electrolyte paves the way for all printed OECT-based biosensors.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Phypers, B.: Lactate physiology in health and disease. Contin. Educ. Anaesth. Crit. Care Pain 6, 128132 (2006).CrossRefGoogle Scholar
2.Maidan, R., and Heller, A.: Elimination of electrooxidizable interferant-produced currents in amperometric biosensors. Anal. Chem. 64, 28892896 (1992).Google Scholar
3.Kim, J., Valdes-Ramirez, G., Bandodkar, A.J., Jia, W., Martinez, A.G., Ramirez, J., Mercier, P., and Wang, J.: Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. Analyst 139, 16321636 (2014).CrossRefGoogle ScholarPubMed
4.Yao, H., Shum, A.J., Cowan, M., Lahdesmaki, I., and Parviz, B.A.: A contact lens with embedded sensor for monitoring tear glucose level. Biosens. Bioelectron. 26, 32903296 (2011).Google Scholar
5.Thomas, N., Lähdesmäki, I., and Parviz, B.A.: A contact lens with an integrated lactate sensor. Sens. Actuators B 162, 128134 (2012).Google Scholar
6.Khodagholy, D., Curto, V.F., Fraser, K.J., Gurfinkel, M., Byrne, R., Diamond, D., Malliaras, G.G., Benito-Lopez, F., and Owens, R.M.: Organic electrochemical transistor incorporating an ionogel as a solid state electrolyte for lactate sensing. J. Mater. Chem. 22, 44404443 (2012).Google Scholar
7.Jia, W., Bandodkar, A.J., Valdes-Ramirez, G., Windmiller, J.R., Yang, Z., Ramirez, J., Chan, G., and Wang, J.: Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal. Chem. 85, 65536560 (2013).Google Scholar
8.White, H.S.K., and Wrighton, G.P.: Chemical derivatization of an array of three gold microelectrodes with polypyrrole: fabrication of a molecule-based transistor. J. Am. Soc. 106, 53755377 (1984).Google Scholar
9.Strakosas, X., Bongo, M., and Owens, R.M.: The organic electrochemical transistor for biological applications. J. Appl. Polym. Sci. 41735, 114 (2015).Google Scholar
10.Bernards, D.A., Macaya, D.J., Nikolou, M., DeFranco, J.A., Takamatsu, S., and Malliaras, G.G.: Enzymatic sensing with organic electrochemical transistors. J. Mater. Chem. 18, 116120 (2008).Google Scholar
11.Shim, N.Y., Bernards, D.A., Macaya, D.J., Defranco, J.A., Nikolou, M., Owens, R.M., and Malliaras, G.G.: All-plastic electrochemical transistor for glucose sensing using a ferrocene mediator. Sensors (Basel) 9, 98969902 (2009).Google Scholar
12.Yang, S.Y., Defranco, J.A., Sylvester, Y.A., Gobert, T.J., Macaya, D.J., Owens, R.M., and Malliaras, G.G.: Integration of a surface-directed microfluidic system with an organic electrochemical transistor array for multi-analyte biosensors. Lab Chip 9, 704708 (2009).Google Scholar
13.Tang, H., Yan, F., Lin, P., Xu, J., and Chan, H.L.W.: Highly sensitive glucose biosensors based on organic electrochemical transistors using platinum gate electrodes modified with enzyme and nanomaterials. Adv. Func. Mater. 21, 22642272 (2011).Google Scholar
14.Elschner, A., Kirchmeyer, S., Lövenich, W., Merker, U., and Reuter, K.: PEDOT, Principles and Applications of an Intrinsically Conductive Polymer (CRC Press, Taylor & Francis Group, Boca Raton, FL, 2011), pp. 113, 158.Google Scholar
15.Owens, R.M., and Malliaras, G.G.: Organic electronics at the interface with biology. MRS Bull. 35, 449456 (2010).CrossRefGoogle Scholar
16.Khodagholy, D., Rivnay, J., Sessolo, M., Gurfinkel, M., Leleux, P., Jimison, L.H., Stavrinidou, E., Herve, T., Sanaur, S., Owens, R.M., and Malliaras, G.G.: High transconductance organic electrochemical transistors. Nat. Commun. 4, 2133(1–6) (2013).CrossRefGoogle ScholarPubMed
17.Rivnay, J., Leleux, P., Sessolo, M., Khodagholy, D., Herve, T., Fiocchi, M., and Malliaras, G.G.: Organic electrochemical transistors with maximum transconductance at zero gate bias. Adv. Mater. 25, 70107014 (2013).Google Scholar
18.Basiricò, L., Cosseddu, P., Scidà, A., Fraboni, B., Malliaras, G.G., and Bonfiglio, A.: Electrical characteristics of ink-jet printed, all-polymer electrochemical transistors. Org. Electron. 13, 244248 (2012).Google Scholar
19.Kaihovirta, N., Mäkelä, T., He, X., Wikman, C.-J., Wilén, C.-E., and Österbacka, R.: Printed all-polymer electrochemical transistors on patterned ion conducting membranes. Org. Electron. 11, 12071211 (2010).CrossRefGoogle Scholar
20.Andersson Ersman, P., Nilsson, D., Kawahara, J., Gustafsson, G., and Berggren, M.: Fast-switching all-printed organic electrochemical transistors. Org. Electron. 14, 12761280 (2013).CrossRefGoogle Scholar
21.David Nilsson, T.K., Svensson, P.-O., and Berggren, M.: An all-organic sensor-transistor based on a novel electrochemical transducer concept printed electrochemical sensors on paper. Sens. Actuators B – Chem. 86, 193197 (2002).Google Scholar
22.Yang, S.Y., Cicoira, F., Byrne, R., Benito-Lopez, F., Diamond, D., Owens, R.M., and Malliaras, G.G.: Electrochemical transistors with ionic liquids for enzymatic sensing. Chem. Commun. (Camb.). 46, 79727974 (2010).Google Scholar
23.Tan, S.N., and Miao, Y.: Amperometric hydrogen peroxide biosensor with silica sol–gel/chitosan film as immobilization matrix. Anal. Chim. Acta 437, 8793 (2001).Google Scholar
24.Xu, J., Chen, X., and Dong, S.: Organically modified sol–gel/chitosan composite based glucose biosensor. Electroanalysis 15, 608612 (2003).Google Scholar
25.Yang, W., Zhou, H., and Sun, C.: Synthesis of ferrocene-branched chitosan derivatives: redox polysaccharides and their application to reagentless enzyme-based biosensors. Macromol. Rapid Commun. 28, 265270 (2007).CrossRefGoogle Scholar
26.Bernards, D.A. and Malliaras, G.G.: Steady-state and transient behavior of organic electrochemical transistors. Adv. Func. Mater. 17, 35383544 (2007).Google Scholar
27.Harvey, C.J., LeBouf, R.F., and Stefaniak, A.B.: Formulation and stability of a novel artificial human sweat under conditions of storage and use. Toxicol. In Vitro 24, 17901796 (2010).Google Scholar
Supplementary material: File

Scheiblin supplementary material

Scheiblin supplementary material 1

Download Scheiblin supplementary material(File)
File 418.2 KB
Supplementary material: File

Scheiblin supplementary material

Scheiblin supplementary material 2

Download Scheiblin supplementary material(File)
File 82.6 KB