Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-28T16:11:08.478Z Has data issue: false hasContentIssue false

Structural origins of enhanced capacity retention in novel copolymerized sulfur-based composite cathodes for high-energy density Li–S batteries

Published online by Cambridge University Press:  13 July 2015

Vladimir P. Oleshko*
Affiliation:
Materials Science and Engineering Division, Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742
Jenny Kim
Affiliation:
Materials Science and Engineering Division, Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Jennifer L. Schaefer
Affiliation:
Materials Science and Engineering Division, Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Steven D. Hudson
Affiliation:
Materials Science and Engineering Division, Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Christopher L. Soles
Affiliation:
Materials Science and Engineering Division, Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Adam G. Simmonds
Affiliation:
Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 8721
Jared J. Griebel
Affiliation:
Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 8721 Department of Chemical and Biological Engineering, The World Class University Program of Chemical Convergence for Energy and Environment, The National Creative Research Initiative Center for Intelligent Hybrids, and Center for Nanoparticle Research, Institute for Basic Research, Seoul National University, Seoul 151-744, Korea
Richard S. Glass
Affiliation:
Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 8721
Kookheon Char
Affiliation:
Department of Chemical and Biological Engineering, The World Class University Program of Chemical Convergence for Energy and Environment, The National Creative Research Initiative Center for Intelligent Hybrids, and Center for Nanoparticle Research, Institute for Basic Research, Seoul National University, Seoul 151-744, Korea
Jeffrey Pyun
Affiliation:
Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 8721 Department of Chemical and Biological Engineering, The World Class University Program of Chemical Convergence for Energy and Environment, The National Creative Research Initiative Center for Intelligent Hybrids, and Center for Nanoparticle Research, Institute for Basic Research, Seoul National University, Seoul 151-744, Korea
*
Address all correspondence to Vladimir P. Oleshko atvladimir.oleshko@nist.gov
Get access

Abstract

Poly[sulfur-random-1,3-diisopropenylbenzene (DIB)] copolymers synthesized via inverse vulcanization form electrochemically active polymers used as cathodes for high-energy density Li–S batteries, capable of enhanced capacity retention (1005 mAh/g at 100 cycles) and lifetimes of over 500 cycles. In this prospective, we demonstrate how analytical electron microscopy can be employed as a powerful tool to explore the origins of the enhanced capacity retention. We analyze morphological and compositional features when the copolymers, with DIB contents up to 50% by mass, are blended with carbon nanoparticles. Replacing the elemental sulfur with the copolymers improves the compatibility and interfacial contact between active sulfur compounds and conductive carbons. There also appears to be improvements of the cathode mechanical stability that leads to less cracking but preserving porosity. This compatibilization scheme through stabilized organosulfur copolymers represents an alternative strategy to the nanoscale encapsulation schemes which are often used to improve the cycle life in high-energy density Li–S batteries.

Type
Polymers/Soft Matter Prospective Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bruce, P.G., Freunberger, S.A., Hardwick, L.J., and Tarascon, J.-M.: Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19 (2012).Google Scholar
2.BBC News Science & Environment: Eternal’ solar plane's records are confirmed, 24 December 2010, http://www.bbc.co.uk/news/science-environment-12074162Google Scholar
3.Oleshko, V.P., Scordilis-Kelley, C., Xiao, A., Affinito, J., Talyossef, Y., Elazari, R., Grinblat, Y., and Aurbach, D.: Characterization of advanced high-energy density Li-S batteries by FEAEM, SEM/EDS X-ray spectral imaging and feature sizing/chemical typing techniques. Microsc. Microanal. 15, 1398 (2009).CrossRefGoogle Scholar
4.Ji, X., Lee, K.T., and Nazar, L.F.: A highly ordered nanostructured carbon–sulfur cathode for lithium–sulfur batteries. Nat. Mater. 8, 500 (2009).Google Scholar
5.Li, X., Cao, Y., Qi, W., Saraf, L.V., Xiao, J., Nie, Z., Mietek, J., Zhang, J.-G., Schwenzer, B., and Liu, J.: Optimization of mesoporous carbon structures for lithium–sulfur battery applications. J. Mater. Chem. 21, 16603 (2011).Google Scholar
6.Ji, X., Evers, S., Black, R., and Nazar, L.F.: Stabilizing lithium–sulfur cathodes using polysulfide reservoirs. Nat. Commun. 2, 325 (2011).Google Scholar
7.Jayaprakash, N., Shen, J., Moganty, S.S., Corona, A., and Archer, L.A.: Porous hollow carbon @ sulfur composites for high-power lithium–sulfur batteries. Angew. Chem. Int. Ed., 50, 5904 (2011).Google Scholar
8.Elazari, R., Salitra, G., Garsuch, A., Panchenko, A., and Aurbach, D.: Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries. Adv. Mater. 23, 5641 (2011).Google Scholar
9.Ji, L., Rao, M., Aloni, S., Wang, L., Cairns, E.J., and Zhang, Y.: Porous carbon nanofiber–sulfur composite electrodes for lithium/sulfur cells. Energy Environ. Sci. 4, 5053 (2011).CrossRefGoogle Scholar
10.Liang, C., Dudney, N.J., and Howe, J.Y.: Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery. Chem. Mater. 21, 4724 (2009).Google Scholar
11.Schuster, J., He, G., Mandlmeier, B., Yim, T., Lee, K.T., Bein, T., and Nazar, L.F.: Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries. Angew. Chem. Int. Ed. 51, 3591 (2012).CrossRefGoogle ScholarPubMed
12.Demir-Cakan, R., Morcrette, M., Nouar, F., Davoisne, C., Devic, T., Gonbeau, D., Dominko, R., Serre, C., Ferey, G., and Tarascon, J.-M.: Cathode composites for Li–S batteries via the use of oxygenated porous architectures. J. Am. Chem. Soc. 133, 16154 (2011).CrossRefGoogle ScholarPubMed
13.Cao, Y., Li, X., Aksay, I.A., Lemmon, J., Nie, Z., Yang, Z., and Liu, J.: Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. J. Phys. Chem. Chem. Phys. 13, 7660 (2011).Google Scholar
14.Ji, L., Rao, M., Zheng, H., Zhang, L., Li, Y., Duan, W., Guo, J., Cairns, E.J., and Zhang, Y.: Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 133, 18522 (2011).Google Scholar
15.Yang, Y., McDowell, M.T., Jackson, A., Cha, J.J., Hong, S.S., and Cui, Y.: New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Lett. 10, 1486 (2010).Google Scholar
16.Wu, F., Chen, J., Chen, R., Wu, S., Li, L., Chen, S., and Zhao, T.: Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J. Phys. Chem. C 115, 6057 (2011).Google Scholar
17.Wang, J., Yang, J., Wan, C., Du, K., Xie, J., and Xu, N.: Sulfur composite cathode materials for rechargeable lithium batteries. Adv. Funct. Mater. 13, 487 (2003).CrossRefGoogle Scholar
18.Scordilis-Kelley, C.A., Mikhaylik, Y., Kovalev, I., Oleshko, V.P., Campbell, C., and Affinito, J.D.: Electrochemical cells comprising porous structures comprising sulfur Int. Patent Appl. No. WO 2011/031297 A2, filed by Sion Power Corp. 08. 28. 2009; published 03. 17. 2011.Google Scholar
19.Seh, Z.W., Li, W., Cha, J.J., Zheng, G., Yang, Y., McDowell, M.T., Hsu, P.-C., and Cui, Y.: Sulfur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulfur batteries. Nat. Commun. 4, 1331 (2013).CrossRefGoogle Scholar
20.Li, W., Zheng, G., Yang, Y., Seh, Z.H., Liu, N., and Cui, Y.: High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach. Proc. Natl. Acad. Sci. USA 110, 7148 (2013).CrossRefGoogle ScholarPubMed
21.Liu, M.L., Visco, S.J., and Dejonghe, L.C.: Novel solid redox polymerization electrodes. All-solid-state, thin-film, rechargeable lithium batteries. J. Electrochem. Soc. 138, 1891 (1991).CrossRefGoogle Scholar
22.Liu, M.L., Visco, S.J., and Dejonghe, L.C.: Novel solid redox polymerization electrodes. Electrochemical properties. J. Electrochem. Soc. 138, 1896 (1991).Google Scholar
23.Chao, Z.S., Lan, Z., and Yu, J.: Preparation and electrochemical properties of polysulfide polypyrrole. J. Power Sources 196, 10263 (2011).Google Scholar
24.Xiao, L., Cao, Y., Xiao, J., Schwenzer, B., Engelhard, M.H., Saraf, L.V., Nie, Z., Exarhos, G.J., and Liu, J.: A soft approach to encapsulate sulfur. Adv. Mater. 24, 1176 (2012).Google Scholar
25.Yang, Y., Zheng, G., Misra, S., Nelson, J., Toney, M.F., and Cui, Y.: High-capacity micrometer-sized Li2S particles as cathode materials. J. Am. Chem. Soc. 134, 15387 (2012).Google Scholar
26.Yao, H., Zheng, G., Hsu, P.-C., Kong, D., Cha, J.J., Li, W., Seh, Z.W., McDowell, M.T., Yan, K., Liang, Z., Narasihman, V.K., and Cui, Y.: Improving lithium–sulfur batteries through spatial control of sulfur species deposition on a hybrid electrode surface. Nat. Commun. 5, 3943 (2014).CrossRefGoogle Scholar
27.Brückner, J., Thieme, S., Böttger-Hiller, F., Bauer, I., Grossmann, H.T., Strubel, P., Althues, H., Spange, S., and Kaskel, S.: Carbon- based anodes for lithium sulfur full cells with high cycle stability. Adv. Funct. Mater. 24, 1284 (2013).Google Scholar
28.Hayashi, A., Ohtomo, T., Mizuno, F., Tadanaga, K., and Tatsumisago, M.: All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes. Electrochem. Commun. 5, 701 (2003).Google Scholar
29.Hassoun, J. and Scrosati, B.: A high-performance polymer tin sulfur lithium ion battery. Angew. Chem. Int. Ed. 49, 2371 (2010).Google Scholar
30.Hassoun, J. and Scrosati, B.: Moving to a solid-state configuration: a valid approach to making lithium-sulfur batteries viable for practical applications. Adv. Mater. 22, 5198 (2010).CrossRefGoogle ScholarPubMed
31.Hassoun, J., Sun, Y.-K., and Scrosati, B.: Rechargeable lithium sulfide electrode for a polymer tin/sulfur lithium-ion battery. J. Power Sources 196, 343 (2011).Google Scholar
32.Hassoun, J., Kim, J., Lee, D.-J., Jung, H.-G., Lee, S.-M., Sun, Y.-K., and Scrosati, B.: A contribution to the progress of high energy batteries: a metal-free, lithium-ion, silicon–sulfur battery. J. Power Sources 202, 308 (2012).Google Scholar
33.Chung, W.-J., Griebel, J.J., Kim, E.-T., Yoon, H.-S., Simmonds, A.G., Ji, H.-J., Dirlam, P.T., Glass, R.S., Wie, J.J., Nguyen, N.A., Guralnick, B.W., Park, J., Somogyi, A., Theato, P., Mackay, M.E., Sung, Y.-E., Char, K.-C., and Pyun, J.: The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem. 5, 518 (2013).Google Scholar
34.Simmonds, A.G., Griebel, J.J., Park, J., Kim, K.R., Chung, W.J., Oleshko, V.P., Kim, J., Kim, E.T., Glass, R.S., Soles, C.L., Sung, Y.-E., Char, K., Pyun, J.: Inverse vulcanization of elemental sulfur to prepare polymeric electrode materials for Li–S batteries. ACS Macro Lett. 3, 229 (2014).Google Scholar
35.Griebel, J.J., Li, G., Glass, R.S., Char, K., and Pyun, J.: Kilogram scale inverse vulcanization of elemental sulfur to prepare high capacity polymer electrodes for Li–S batteries. J. Polym. Sci. A, Polym. Chem. 53, 173 (2015).CrossRefGoogle Scholar
36.Tatsuma, T., Sotomura, T., Sato, T., Buttry, D.A., and Oyama, N.: Dimercaptan-polyaniline cathodes for lithium batteries: addition of a polypyrrole derivative for rapid charging. J. Electrochem. Soc. 142, L182 (1995).CrossRefGoogle Scholar
37.Kiya, Y., Henderson, J.C., and Abruna, H.D.: 4-Amino-4H-1,2,4-triazole-3,5-dithiol a modifiable organosulfur compound as a high-energy cathode for lithium-ion rechargeable batteries. J. Electrochem. Soc. 154, A844 (2007).CrossRefGoogle Scholar
38.Griebel, J.J., Namnabat, S., Kim, E.-T., Himmbelhuber, R., Moronta, D.H., Chung, W.J., Simmonds, A.G., Ngyugen, N., Mackay, M.E., Char, K., Glass, R.S., Norwood, R.A., and Pyun, J.: New infrared transmitting material via inverse vulcanization of elemental sulfur to prepare high refractive index polymers. Adv. Mater. 26, 3014 (2014).Google Scholar
39.Egerton, R.F.: Electron Energy-Loss Spectroscpoy in the Electron Microscope, 3rd ed. (Springer, NY, 2011), pp. 197202.Google Scholar
Supplementary material: File

Oleshko supplementary material

Oleshko supplementary material 1

Download Oleshko supplementary material(File)
File 15.2 MB