Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-18T03:57:39.179Z Has data issue: false hasContentIssue false

Enhancing dielectric breakdown strength: structural relaxation of amorphous polymers and nanocomposites

Published online by Cambridge University Press:  22 May 2015

Christopher A. Grabowski
Affiliation:
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson Air Force Base, Ohio 45433; UES, Inc., Dayton, Ohio 45432, USA
Hilmar Koerner
Affiliation:
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson Air Force Base, Ohio 45433, USA
Richard A. Vaia*
Affiliation:
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson Air Force Base, Ohio 45433, USA
*
Address all correspondence to Richard A. Vaia atrichard.vaia@us.af.mil
Get access

Abstract

The thermal history of amorphous polymers near the glass-transition temperature determines the extent to which macromolecules structurally relax, and ultimately their properties. Here, we report the correlation between physical aging, dielectric breakdown, and capacitive energy storage of polystyrene, poly(methyl-methacrylate), and associated silica nanocomposites. Guided by enthalphic recovery rates, dielectric breakdown strength increased from 20% to 40% when aged at Tg−10 °C before use. The generality of improvement and connection to enthalpic recovery afford a means to design pre-service processing of new polymers and additive manufacturing techniques to reduce excess volume within the glass; and thereby reduce initiation and inhibit propagation of electronic failure.

Type
Polymers/Soft Matter Research Letters
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Dang, Z.M., Yuan, J.K., Yao, S.H., and Liao, R.J.: Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater. 25, 63346365 (2013).Google Scholar
2.Wang, Q. and Zhu, L.: Polymer nanocomposites for electrical energy storage. J. Polym. Sci. B, Polym. Phys. 49, 14211429 (2011).CrossRefGoogle Scholar
3.Dissadio, L.A. and Fothergill, J.C.: Electrical Degradation and Breakdown in Polymers (Peter Peregrinius Ltd., London, UK, 1992) pp. 601.Google Scholar
4.Sabuni, H. and Nelson, J.K.: The electric strength of copolymers. J. Mater. Sci. 12, 24352440 (1977).Google Scholar
5.Wu, K., Okamoto, T., and Suzuoki, Y.: Simulation study on the correlation between morphology and electrical breakdown in polyethylene. J. Appl. Phys. 98, 114102 (2005).Google Scholar
6.Artbauer, J.: Electric strength of polymers. J. Phys. D, Appl. Phys. 29, 446456 (1996).Google Scholar
7.Paniagua, S.A., Kim, Y., Henry, K., Kumar, R., Perry, J.W., and Marder, S.R.: Surface-initiated polymerization from barium titanate nanoparticles for hybrid dielectric capacitors. ACS Appl. Mater. Interface. 6, 34773482 (2014).CrossRefGoogle ScholarPubMed
8.Li, J., Claude, J., Norena-Franco, L.E., Seok, S.I., and Wang, Q.: Electrical energy storage in ferroelectric polymer nanocomposites containing surface-functionalizedBaTiO3 nanoparticles. Chem. Mater. 20, 63046306 (2008).Google Scholar
9.Hutchinson, J.M.: Physical aging of polymers. Prog. Polym. Sci. 20, 703760 (1995).Google Scholar
10.Cangialosi, D., Boucher, V.M., Alegria, A., and Colmenero, J.: Physical aging in polymers and polymer nanocomposites: recent results and open questions. Soft Matter 9, 86198630 (2013).Google Scholar
11.Priestley, R.D.: Physical aging of confined glasses. Soft Matter 5, 919926 (2009).CrossRefGoogle Scholar
12.Vouyovitch, L., Alberola, N.D., Flandin, L., Beroual, A., and Bessede, J.-L.: Dielectric breakdown of epoxy-based composites: relative influence of physical and chemical aging. IEEE Trans. Dielectr. Electr. Insul. 13, 282292 (2006).Google Scholar
13.Champion, J.V. and Dodd, S.J.: The effect of voltage and material age on the electrical tree growth and breakdown characteristics of epoxy resins. J. Phys. D, Appl. Phys. 28, 398407 (1995).Google Scholar
14.Koh, Y.P. and Simon, S.L.: Enthalpy recovery of polystyrene: does a long-term aging plateau exist? Macromolecules 46, 58155821 (2013).Google Scholar
15.Simon, S.L., Sobieski, J.W., and Plazek, D.J.: Volume and enthalpy recovery of polystyrene. Polymer 42, 25552567 (2001).Google Scholar
16.Meth, J.S., Zane, S.G., Chi, C.Z., Londono, J.D., Wood, B.A., Cotts, P., Keating, M., Guise, W., and Weigand, S.: Development of filler structure in colloidal silica-polymer nanocomposites. Macromolecules 44, 83018313 (2011).Google Scholar
17.Pietrasik, J., Hui, C.M., Chaladaj, W., Dong, H., Choi, J., Jurczak, J., Bockstaller, M.R., and Matyjaszewski, K.: Silica-polymethacrylate hybrid particles synthesized using high-pressure atom transfer radical polymerization. Macromol. Rapid Commun. 32, 295311 (2011).Google Scholar
18.Grabowski, C.A., Koerner, H., Meth, J.S., Dang, A., Hui, C.M., Matyjaszewski, K., Bockstaller, M.R., Durstock, M.F., and Vaia, R.A.: Performance of dielectric nanocomposites: matrix-free, hairy nanoparticle assemblies and amorphous polymer-nanocomposite blends. ACS Appl. Mater. Interfaces 6, 2150021509 (2014).CrossRefGoogle Scholar
19.Sun, Y., Boggs, S.A., and Ramprasad, R.: The intrinsic electric breakdown strength of insulators from first principles. Appl. Phys. Lett. 101, 132906 (2012).CrossRefGoogle Scholar
20.Badrinarayanan, P. and Simon, S.L.: Origin of the divergence of the timescales for volume and enthalpy recovery. Polymer 48, 14641470 (2007).Google Scholar
21.Tchoul, M.N., Fillery, S.P., Koerner, H., Drummy, L.F., Oyerokun, F.T., Mirau, P.A., Durstock, M.F., and Vaia, R.A.: Assemblies of titanium dioxide-polystyrene hybrid nanoparticles for dielectric applications. Chem. Mater. 22, 17491759 (2010).CrossRefGoogle Scholar
22.Rittigstein, P. and Torkelson, J.M.: Polymer-nanoparticle interfacial interactions in polymer nanocomposites: confinement effects on glass transition temperature and suppression of physical aging. J. Polym. Sci. B, Polym. Phys. 4, 29352943 (2006).Google Scholar
23.Boucher, V.M., Cangialosi, D., Alegria, A., and Colmenero, J.: Physical aging in PMMA/silica nanocomposites: enthalpy and dielectric relaxation. J. Non-Cryst. Solids 357, 605609 (2011).CrossRefGoogle Scholar
24.Koerner, H., Bockstaller, M.R., Dang, A., Mahoney, C., Matyjaszewski, K., Hui, C.M., and Vaia, R.A.: Physical aging within hairy nanoparticle assemblies. Bull. Am. Phys. Soc. 59 (2014).Google Scholar
25.Grabowski, C.A., Fillery, S.P., Westing, N.M., Chi, C., Meth, J.S., Durstock, M.F., and Vaia, R.A.: Dielectric breakdown in silica–amorphous polymer nanocomposite films: the role of the polymer matrix. ACS Appl. Mater. Interface. 5, 54865492 (2013).Google Scholar
Supplementary material: File

Grabowski supplementary material

Grabowski supplementary material 1

Download Grabowski supplementary material(File)
File 339.5 KB