Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-26T22:07:04.862Z Has data issue: false hasContentIssue false

Ferroelectric polymers as multifunctional electroactive materials: recent advances, potential, and challenges

Published online by Cambridge University Press:  07 May 2015

Xiaoshi Qian*
Affiliation:
Department of Electrical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
Shan Wu
Affiliation:
Department of Electrical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
Eugene Furman
Affiliation:
Department of Electrical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
Q.M. Zhang*
Affiliation:
Department of Electrical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
Ji Su
Affiliation:
NASA Langley Research Center, Hampton, Virginia 23681, USA
*
Address all correspondence Xiaoshi Qian, Q. M. Zhang atxyq5004@psu.edu; qxz1@psu.edu
Address all correspondence Xiaoshi Qian, Q. M. Zhang atxyq5004@psu.edu; qxz1@psu.edu
Get access

Abstract

As multifunctional electroactive materials, ferroelectric polymers are unique owing to their exceptionally high dielectric strength (>600 MV/m), high flexibility, and easy and low-temperature fabrication into required shapes. Although polyvinylidene difluoride (PVDF)-based ferroelectric polymers have been known for several decades, recent findings reveal the potential of this class of electroactive polymers (EAPs) to achieve giant electroactive responses by tuning the molecular, nano, and meso-structures. This paper presents these advances, including giant electrocaloric effect, giant electroactuation, and large, hysteresis-free polarization response. New developments in materials benefit applications, such as environmentally benign and potentially highly energy-efficient electrical field controlled solid-state refrigeration, artificial muscles, and high-energy and power density electric energy storage devices. The challenges in developing these materials to realize these applications, and strategies to further improve the responses of EAPs will be also discussed.

Type
Polymers/Soft Matter Prospective Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Valasek, J.: Piezo-electric and allied phenomena in Rochelle salt. Phys. Rev. 17, 475 (1921).Google Scholar
2.Lines, M. and Glass, A.: Principles and Applications of Ferroelectrics and Related Materials (Larendon, Oxford, 1977).Google Scholar
3.Kawai, H.: Piezoelectricity of poly (vinylidene fluoride). Japan. J. Appl. Phys. 8, 975 (1969).Google Scholar
4.Wang, T.T., Herbert, J.M., and Glass, A.M.: The Applications of Ferroelectric Polymers (Blackie; Chapman and Hall, Glasgow, New York, 1988).Google Scholar
5.Sessler, G.M.: Electrets (Laplacian Press, Morgan Hill, CA., 1998).Google Scholar
6.Xu, Y.: Ferroelectric Materials and their Applications (North-Holland; Sole distributors for the USA and Canada, Elsevier Science Pub. Co., Amsterdam, New York, NY, 1991).Google Scholar
7.Ambrosy, A. and Holdik, K.: Piezoelectric PVDF films as ultrasonic transducers. J. Phys. E-Sci. Instrum. 17, 856 (1984).CrossRefGoogle Scholar
8.Bhavanasi, V., Kusuma, D.Y., and Lee, P.S.: Polarization orientation, piezoelectricity, and energy harvesting performance of ferroelectric PVDF–TrFE nanotubes synthesized by nanoconfinement. Adv. Energy Mater. 4, 8 (2014).Google Scholar
9.Olsen, R.B., Bruno, D.A., and Briscoe, J.M.: Pyroelectric conversion cycles. J. Appl. Phys. 58, 4709 (1985).Google Scholar
10.Persano, L., Dagdeviren, C., Su, Y., Zhang, Y., Girardo, S., Pisignano, D., Huang, Y., and Rogers, J.A.: High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 4, 1633 (2013).Google Scholar
11.Alpay, S.P., Mantese, J., Trolier-McKinstry, S., Zhang, Q., and Whatmore, R.W.: Next-generation electrocaloric and pyroelectric materials for solid-state electrothermal energy interconversion. MRS Bull. 39, 1099 (2014).Google Scholar
12.Naber, R.C.G., Asadi, K., Blom, P.W.M., de Leeuw, D.M., and de Boer, B.: Organic nonvolatile memory devices based on ferroelectricity. Adv. Mater. 22, 933 (2010).CrossRefGoogle ScholarPubMed
13.Lovinger, A.J.: Ferroelectric polymers. Science 220, 1115 (1983).CrossRefGoogle ScholarPubMed
14.Neese, B., Chu, B., Lu, S.-G., Wang, Y., Furman, E., and Zhang, Q.M.: Large electrocaloric effect in ferroelectric polymers near room temperature. Science 321, 821 (2008).Google Scholar
15.Lu, S.-G. and Zhang, Q.: Electrocaloric materials for solid-state refrigeration. Adv. Mater. 21, 1983 (2009).Google Scholar
16.Li, X., Lu, S.-G., Chen, X.-Z., Gu, H., Qian, X.-S., and Zhang, Q.M.: Pyroelectric and electrocaloric materials. J. Mater. Chem. C 1, 23 (2013).Google Scholar
17.Cheng, Z. and Zhang, Q.: Field-activated electroactive polymers. MRS Bull. 33, 183 (2008).Google Scholar
18.Sarjeant, W.J., Zirnheld, J., and MacDougall, F.W.: Capacitors. IEEE Trans. Plasma Sci. 26, 1368 (1998).CrossRefGoogle Scholar
19.Rabuffi, M. and Picci, G.: Status quo and future prospects for metallized polypropylene energy storage capacitors. IEEE Trans. Plasma Sci. 30, 1939 (2002).Google Scholar
20.Chu, B.J., Zhou, X., Ren, K.L., Neese, B., Lin, M.R., Wang, Q., Bauer, F., and Zhang, Q.M.: A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 334 (2006).Google Scholar
21.Zhou, X., Chen, Q., Zhang, Q.M., and Zhang, S.: Dielectric behavior of bilayer films of P(VDF-CTFE) and low temperature PECVD fabricated Si3N4. IEEE Trans. Dielectr. Electr. Insul. 18, 463 (2011).Google Scholar
22.Zhang, Q.M., Brisson, J.G. II, Joe Smith, J., Calvert, P., Bauer, F., and Knowles, G.: Relaxor ferroelectric polymer based electrotextile for thermal management of soldiers with protective gears, (Proposal Submitted to DARPA BAA 04-12 Addendum 7, 2004) http://www.ee.psu.edu/Directory/FacultyInfo/Zhang/ProposaldarpaSMFMNov1104%20-ECEPart.pdfGoogle Scholar
23.Li, X., Qian, X.-S., Lu, S.G., Cheng, J., Fang, Z., and Zhang, Q.M.: Tunable temperature dependence of electrocaloric effect in ferroelectric relaxor poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene terpolymer. Appl. Phys. Lett. 99, 052907 (2011).Google Scholar
24.Li, B., Ren, W.J., Wang, X.W., Meng, H., Liu, X.G., Wang, Z.J., and Zhang, Z.D.: Intrinsic electrocaloric effects in ferroelectric poly(vinylidene fluoride–trifluoroethylene) copolymers: roles of order of phase transition and stresses. Appl. Phys. Lett. 96, 102903 (2010).Google Scholar
25.Liu, P.F., Wang, J.L., Meng, X.J., Yang, J., Dkhil, B., and Chu, J.H.: Huge electrocaloric effect in Langmuir–Blodgett ferroelectric polymer thin films. New J. Phys. 12, 023035 (2010).Google Scholar
26.Rozic, B., Kutnjak, Z., Neese, B., Lu, S.-G., and Zhang, Q.M.: Electrocaloric effect in the relaxor ferroelectric polymer composition P(VDF-TrFE-CFE)0.90-P(VDF-CTFE)0.10. Phase Transit. 83, 819 (2010).Google Scholar
27.Lu, S.G., Rozic, B., Zhang, Q.M., Kutnjak, Z., and Neese, B.: Enhanced electrocaloric effect in ferroelectric poly(vinylidene-fluoride/trifluoroethylene) 55/45 mol % copolymer at ferroelectric-paraelectric transition. Appl. Phys. Lett. 98, 122906 (2011).Google Scholar
28.Skripkin, A.A., Solopov, A.A., Lyashenko, A.V., and Ignatyev, A.A.: High Frequency Air-cooling Radiator has Housing which has Input Portion that is made in Form of Venturi Nozzle, and has Inner Surface with thin Film Electrocaloric Polymer (Tantal Stock Co; Inst Critical Technologies Stock Co; Univ Saratov) RU141660-U1.Google Scholar
29.Basso, V., Russo, F., Gerard, J.-F., and Pruvost, S.: Direct measurement of the electrocaloric effect in poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymer films. Appl. Phys. Lett. 103, 202904 (2013).Google Scholar
30.Jia, Y., and Ju, Y.S.: Direct characterization of the electrocaloric effects in thin films supported on substrates. Appl. Phys. Lett. 103, 042903 (2013).Google Scholar
31.Moreira, R.L.: Electrocaloric effect in gamma-irradiated P(VDF–TrFE) copolymers with relaxor features. Ferroelectrics 446, 1 (2013).Google Scholar
32.Guo, D., Gao, J., Yu, Y.-J., Santhanam, S., Fedder, G.K., McGaughey, A.J.H., and Yao, S.C.: Electrocaloric characterization of a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer by infrared imaging. Appl. Phys. Lett. 105, 031906 (2014).Google Scholar
33.Jia, Y., and Ju, Y.S.: Characterization of the electrocaloric effect and hysteresis loss in relaxor ferroelectric thin films under alternating current bias fields. Appl. Phys. Lett. 104, 251913 (2014).Google Scholar
34.Li, X., Qian, X.-S., Gu, H., Chen, X., Lu, S.G., Lin, M., Bateman, F., and Zhang, Q.M.: Giant electrocaloric effect in ferroelectric poly(vinylidenefluoride-trifluoroethylene) copolymers near a first-order ferroelectric transition. Appl. Phys. Lett. 101, 132903 (2012).Google Scholar
35.Pirc, R., Kutnjak, Z., Blinc, R., and Zhang, Q.M.: Electrocaloric effect in relaxor ferroelectrics. J. Appl. Phys. 110, 074113 (2011).CrossRefGoogle Scholar
36.Li, X., Qian, X.-S., Lu, S.G., Cheng, J., Fang, Z., and Zhang, Q.M.: Tunable temperature dependence of electrocaloric effect in ferroelectric relaxor poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene terpolymer. Appl. Phys. Lett. 99, 052907 (2011).Google Scholar
37.Liu, Z.K., Li, X., and Zhang, Q.M.: Maximizing the number of coexisting phases near invariant critical points for giant electrocaloric and electromechanical responses in ferroelectrics. Appl. Phys. Lett. 101, 082904 (2012).CrossRefGoogle Scholar
38.Qian, X.-S., Ye, H.-J., Zhang, Y.-T., Gu, H., Li, X., Randall, C.A., and Zhang, Q.M.: Giant electrocaloric response over a broad temperature range in modifi ed BaTiO 3 ceramics. Adv. Funct. Mater. 24, 1300 (2014).Google Scholar
39.Ye, H.-J., Qian, X.-S., Jeong, D.-Y., Zhang, S., Zhou, Y., Shao, W.-Z., Zhen, L., and Zhang, Q.M.: Giant electrocaloric effect in BaZr0.2Ti0.8O3 thick film. Appl. Phys. Lett. 105, 152908 (2014).Google Scholar
40.Chen, X.-Z., Li, X., Qian, X.-S., Lin, M., Wu, S., Shen, Q.-D., and Zhang, Q.M.: A nanocomposite approach to tailor electrocaloric effect in ferroelectric polymer. Polymer 54, 5299 (2013).Google Scholar
41.Zhang, G., Li, Q., Gu, H., Jiang, S., Han, K., Gadinski, M.R., Haque, M.A., Zhang, Q., and Wang, Q.: Ferroelectric polymer nanocomposites for room-temperature electrocaloric refrigeration. Adv. Mater. 27, 1450 (2015).Google Scholar
42.Gu, H., Qian, X., Li, X., Craven, B., Zhu, W., Cheng, A., Yao, S.C., and Zhang, Q.M.: A chip scale electrocaloric effect based cooling device. Appl. Phys. Lett. 102, 122904 (2013).Google Scholar
43.Gu, H., Qian, X.-S., Ye, H.-J., and Zhang, Q.M.: An electrocaloric refrigerator without external regenerator. Appl. Phys. Lett. 105, 162905 (2014).CrossRefGoogle Scholar
44.Chen, X.-Z., Qian, X.-S., Li, X., Lu, S.G., Gu, H.-m, Lin, M., Shen, Q.-d, and Zhang, Q.M.: Enhanced electrocaloric effect in poly(vinylidene fluoride-trifluoroethylene)-based terpolymer/copolymer blends. Appl. Phys. Lett. 100, 222902 (2012).Google Scholar
45.Chen, X.-Z., Li, X., Qian, X.-S., Wu, S., Lu, S.-G., Gu, H.-M., Lin, M., Shen, Q.-D., and Zhang, Q.M.: A polymer blend approach to tailor the ferroelectric responses in P(VDF-TrFE) based copolymers. Polymer 54, 2373 (2013).Google Scholar
46.Gu, H., Li, X., Lu, S.G., Lin, M., Qian, X., Cheng, J.P., Zhang, Q.M., Cheng, A. and Craven, B.: Compact cooling devices based on giant electrocaloric effect dielectrics. In Proceedings of the Asme Summer Heat Transfer Conference, 2012, Vol 2, 2012, p. 635.CrossRefGoogle Scholar
47.Gu, H., Qian, X., Li, X., Craven, B., Zhu, W., Cheng, A., Yao, S.C., and Zhang, Q.M.: A chip scale electrocaloric effect based cooling device. Appl. Phys. Lett. 102, 122904 (2013).Google Scholar
48.Gu, H., Craven, B., Qian, X., Li, X., Cheng, A., and Zhang, Q.M.: Simulation of chip-size electrocaloric refrigerator with high cooling-power density. Appl. Phys. Lett. 102, 112901 (2013).Google Scholar
49.Plaznik, U., Kitanovski, A., Rozic, B., Malic, B., Ursic, H., Drnovsek, S., Cilensek, J., Vrabelj, M., Poredos, A., and Kutnjak, Z.: Bulk relaxor ferroelectric ceramics as a working body for an electrocaloric cooling device. Appl. Phys. Lett. 106, 043903 (2015).Google Scholar
50.Chukka, R., Shannigrahi, S., and Chen, L.: Investigations of cooling efficiencies in solid-state electrocaloric device. Integr. Ferroelectr. 133, 3 (2012).CrossRefGoogle Scholar
51.Sinyavsky, Y.V. and Brodyansky, V.M.: Experimental testing of electrocaloric cooling with transparent ferroelectric ceramic as a working body. Ferroelectrics 131, 321 (1992).Google Scholar
52.Jia, Y. and Sungtaek, Y.: A solid-state refrigerator based on the electrocaloric effect. Appl. Phys. Lett. 100, 242901 (2012).CrossRefGoogle Scholar
53.Karmanenko, S.F., Pakhomov, O.V., Prudan, A.M., Starkov, A.S., and Eskov, A.: Layered ceramic structure based on the electrocaloric elements working as a solid state cooling line. J. Eur. Ceram. Soc. 27, 3109 (2007).Google Scholar
54.Ozbolt, M., Kitanovski, A., Tusek, J., and Poredos, A.: Electrocaloric refrigeration: thermodynamics, state of the art and future perspectives. Int. J. Refrig. –Rev. Int. Froid 40, 174 (2014).Google Scholar
55.Guo, D., Gao, J., Yu, Y.-J., Santhanam, S., Slippey, A., Fedder, G.K., McGaughey, A.J.H., and Yao, S.-C.: Design and modeling of a fluid-based micro-scale electrocaloric refrigeration system. Int. J. Heat Mass Transfer 72, 559 (2014).Google Scholar
56.Olsen, R.B. and Brown, D.D.: High-efficiency direct conversion of heat to electrical energy-related pyroelectric measurements. Ferroelectrics 40, 17 (1982).Google Scholar
57.Sinyavsky, Y.V., Pashkov, N.D., Gorovoy, Y.M., and Lugansky, G.E.: The optical ferroelectric ceramic as working body for electrocaloric refrigeration. Ferroelectrics 90, 213 (1989).Google Scholar
58.Qian, X.-S., Lu, S.-G., Li, X., Gu, H., Chien, L.-C., and Zhang, Q.: Large electrocaloric effect in a dielectric liquid possessing a large dielectric anisotropy near the isotropic-nematic transition. Adv. Funct. Mater. 23, 2894 (2013).Google Scholar
59.Zhu, L.: Exploring strategies for high dielectric constant and low loss polymer dielectrics. J. Phys. Chem. Lett. 5, 3677 (2014).Google Scholar
60.Liu, Y., Wei, J., Janolin, P.-E., Infante, I.C., Lou, X., and Dkhil, B.: Giant room-temperature barocaloric effect and pressure-mediated electrocaloric effect in BaTiO3 single crystal. Appl. Phys. Lett. 104, 162904 (2014).Google Scholar
61.Redmond, M., Manickaraj, K., Sullivan, O., Mukhopadhyay, S., and Kumar, S.: Hotspot cooling in stacked chips using thermoelectric coolers. IEEE Trans. Compon. Packag. Manuf. Technol. 3, 759 (2013).Google Scholar
62.Jordan, J.D. and Carhuapoma, J.R.: Hypothermia: comparing technology. J. Neurol. Sci. 261, 35 (2007).Google Scholar
63.Lovinger, A.J., Furukawa, T., Davis, G.T., and Broadhurst, M.G.: Curie transitions in copolymers of vinylidene fluoride. Ferroelectrics 50, 553 (1983).Google Scholar
64.Lovinger, A.J.: Poly(Vinylidene Fluoride). In Developments in Crystalline Polymers, edited by Bassett, D.C. (Applied Science Publishers, London, 1982), pp. 195273.Google Scholar
65.Huang, C., Klein, R., Xia, F., Li, H.F., Zhang, Q.M., Bauer, F., and Cheng, Z.Y.: Poly(vinylidene fluoride-trifluoroethylene) based high performance electroactive polymers. Ieee Trans. Dielectr. Electr. Insulat. 11, 299 (2004).CrossRefGoogle Scholar
66.Zhang, Q.M., Bharti, V., and Zhao, X.: Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science 280, 2101 (1998).Google Scholar
67.Cheng, Z.Y., Xu, T.B., Bharti, V., Wang, S.X., and Zhang, Q.M.: Transverse strain responses in the electrostrictive poly(vinylidene fluoride-trifluorethylene) copolymer. Appl. Phys. Lett. 74, 1901 (1999).Google Scholar
68.Guo, S.S., Zhao, X.Z., Zhou, Q.F., Chan, H.L.W., and Choy, C.L.: High electrostriction and relaxor ferroelectric behavior in proton-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Appl. Phys. Lett. 84, 3349 (2004).Google Scholar
69.Xia, F., Cheng, Z.Y., Xu, H.S., Li, H.F., Zhang, Q.M., Kavarnos, G.J., Ting, R.Y., Abdul-Sedat, G., and Belfield, K.D.: High electromechanical responses in a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer. Adv. Mater. 14, 1574 (2002).Google Scholar
70.Xu, H.S., Cheng, Z.Y., Olson, D., Mai, T., Zhang, Q.M., and Kavarnos, G.: Ferroelectric and electromechanical properties of poly(vinylidene-fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymer. Appl. Phys. Lett. 78, 2360 (2001).Google Scholar
71.Garrett, J.T., Roland, C.M., Petchsuk, A., and Chung, T.C.: Electrostrictive behavior of poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene). Appl. Phys. Lett. 83, 1190 (2003).Google Scholar
72.Cheng, Z.Y., Zhang, Q.M., and Bateman, F.B.: Dielectric relaxation behavior and its relation to microstructure in relaxor ferroelectric polymers: high-energy electron irradiated poly(vinylidene fluoride-trifluoroethylene) copolymers. J. Appl. Phys. 92, 6749 (2002).Google Scholar
73.Cheng, Z.Y., Olson, D., Xu, H.S., Xia, F., Hundal, J.S., Zhang, Q.M., Bateman, F.B., Kavarnos, G.J., and Ramotowski, T.: Structural changes and transitional behavior studied from both micro- and macroscale in the high-energy electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Macromolecules 35, 664 (2002).Google Scholar
74.Li, Z.M., Arbatti, M.D., and Cheng, Z.Y.: Recrystallization study of high-energy electron-irradiated P(VDF-TrFE) 65/35 copolymer. Macromolecules 37, 79 (2004).Google Scholar
75.Li, Z.M., Li, S.Q., and Cheng, Z.Y.: Crystalline structure and transition behavior of recrystallized-irradiated P(VDF-TrFE) 65/35 copolymer. J. Appl. Phys. 97, 014102 (2005).Google Scholar
76.Jayasuriya, A.C., Schirokauer, A., and Scheinbeim, J.I.: Crystal-structure dependence of electroactive properties in differently prepared poly(vinylidene fluoride/hexafluoropropylene) copolymer films. J. Polym. Sci. B – Polym. Phys. 39, 2793 (2001).Google Scholar
77.Wegener, M., Kunstler, W., Richter, K., and Gerhard-Multhaupt, R.: Ferroelectric polarization in stretched piezo- and pyroelectric poly(vinylidene fluoride-hexafluoropropylene) copolymer films. J. Appl. Phys. 92, 7442 (2002).Google Scholar
78.Neese, B., Wang, Y., Chu, B., Ren, K., Liu, S., Zhang, Q.M., Huang, C., and West, J.: Piezoelectric responses in poly(vinylidene fluoride/hexafluoropropylene) copolymers. Appl. Phys. Lett. 90, 242917 (2007).Google Scholar
79.Li, Z.M., Wang, Y.H., and Cheng, Z.Y.: Electromechanical properties of poly(vinylidene-fluoride-chlorotrifluoroethylene) copolymer. Appl. Phys. Lett. 88, 062904 (2006).Google Scholar
80.Klein, R.J., Xia, F., Zhang, Q.M., and Bauer, F.: Influence of composition on relaxor ferroelectric and electromechanical properties of poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene). J. Appl. Phys. 97, 094105 (2005).Google Scholar
81.Xu, T.B., Cheng, Z.Y., and Zhang, Q.M.: High-performance micromachined unimorph actuators based on electrostrictive poly(vinylidene fluoride-trifluoroethylene) copolymer. Appl. Phys. Lett. 80, 1082 (2002).Google Scholar
82.Xia, F., Tadigadapa, S., and Zhang, Q.M.: Electroactive polymer based microfluidic pump. Sens. Actuators a – Phys. 125, 346 (2006).Google Scholar
83.Choi, S.T., Lee, J.Y., Kwon, J.O., Lee, S., and Kim, W.: Varifocal liquid-filled microlens operated by an electroactive polymer actuator. Opt. Lett. 36, 1920 (2011).Google Scholar
84.Choi, S.T., Kwon, J.O., and Bauer, F.: Multi layered relaxor ferroelectric polymer actuators for low-voltage operation fabricated with an adhesion-mediated film transfer technique. Sens. Actuators a – Phys. 203, 282 (2013).CrossRefGoogle Scholar
85.Su, J., Harrison, J., St Clair, T., Harrison, J.S., and St Clair, T.L.: Polymeric Piezoelectric Material (Nasa Us Nat Aero & Space Admin; Nasa Us Nat Aero&Space Admin) WO200130875-A.Google Scholar
86.Su, J., Harrison, J., St Clair, T., Harrison, J.S., and St Clair, T.L.: Electromechanical Response Providing Device, has Active Web to Exhibit Electrostriction by Rotation of Polar Graft Moieties within Polymeric Web (Nasa Us Nat Aero & Space Admin; Nasa Us Nat Aero&Space Admin) WO200131172-A.Google Scholar
87.Levard, T., Diglio, P.J., Lu, S.-G., Rahn, C.D., and Zhang, Q.M.: Core-free rolled actuators for Braille displays using P(VDF–TrFE–CFE). Smart Mater. Struct. 21, 012001 (2012).Google Scholar
88.Huang, C. and Zhang, Q.M.: Enhanced dielectric and electromechanical responses in high dielectric constant all-polymer percolative composites. Adv. Funct. Mater. 14, 501 (2004).Google Scholar
89.Zhang, S.H., Zhang, N.Y., Huang, C., Ren, K.L., and Zhang, Q.M.: Microstructure and electromechanical properties of carbon nanotube/poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) composites. Adv. Mater. 17, 1897 (2005).Google Scholar
90.Javadi, A., Xiao, Y., Xu, W., and Gong, S.: Chemically modified graphene/P(VDF-TrFE-CFE) electroactive polymer nanocomposites with superior electromechanical performance. J. Mater. Chem. 22, 830 (2012).Google Scholar
91.Pelrine, R., Kornbluh, R., Pei, Q.B., and Joseph, J.: High-speed electrically actuated elastomers with strain greater than 100%. Science 287, 836 (2000).CrossRefGoogle ScholarPubMed
92.Zhenyl, M., Scheinbeim, J.I., Lee, J.W., and Newman, B.A.: High-field electrostrictive response of polymers. J. Polym. Sci. B – Polym. Phys. 32, 2721 (1994).Google Scholar
93.Kofod, G., Sommer-Larsen, P., Kronbluh, R., and Pelrine, R.: Actuation responsee of polyacrylate dielectric elastomers. J. Intell. Mater. Syst. Struct. 14, 787 (2003).Google Scholar
94.Li, Z.M. and Cheng, Z.Y.: Partially ordered region—a new mechanism for electromechanical response of EAPs. In Smart Structures and Materials 2005: Electroactive Polymer Actuators and Devices. Proceedings of SPIE 5759, 252 (2005).Google Scholar
95.Zhao, X. and Suo, Z.: Method to analyze electromechanical stability of dielectric elastomers. Appl. Phys. Lett. 91, 061921 (2007).Google Scholar
96.Kofod, G., Wirges, W., Paajanen, M., and Bauer, S.: Energy minimization for self-organized structure formation and actuation. Appl. Phys. Lett. 90, 081916 (2007).Google Scholar
97.Zhang, Q.M., Li, H.F., Poh, M., Xia, F., Cheng, Z.Y., Xu, H.S., and Huang, C.: An all-organic composite actuator material with a high dielectric constant. Nature 419, 284 (2002).Google Scholar
98.Zhu, L. and Wang, Q.: Novel ferroelectric polymers for high energy density and low loss dielectrics. Macromolecules 45, 2937 (2012).Google Scholar
99.Wu, S., Shao, M., Burlingame, Q., Chen, X., Lin, M., Xiao, K., and Zhang, Q.M.: A high-K ferroelectric relaxor terpolymer as a gate dielectric for organic thin film transistors. Appl. Phys. Lett. 102, 013301 (2013).Google Scholar
100.Zhou, X., Zhao, X., Suo, Z., Zou, C., Runt, J., Liu, S., Zhang, S., and Zhang, Q.M.: Electrical breakdown and ultrahigh electrical energy density in poly(vinylidene fluoride-hexafluoropropylene) copolymer. Appl. Phys. Lett. 94, 162901 (2009).CrossRefGoogle Scholar
101.Bassett, D.C.: Developments in Crystalline Polymers—1 (Applied Science Publishers, London, 1982).Google Scholar
102.Wu, S., Lin, M., Lu, S.G., Zhu, L., and Zhang, Q.M.: Polar-fluoropolymer blends with tailored nanostructures for high energy density low loss capacitor applications. Appl. Phys. Lett. 99, 132901 (2011).Google Scholar
103.Tanaka, T., Kozako, M., Fuse, N., and Ohki, Y.: Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans. Dielectr. Electr. Insul. 12, 669 (2005).Google Scholar
104.Lewis, T.J.: Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE Trans. Dielectr. Electr. Insul. 11, 739 (2004).Google Scholar
105.Rao, Y. and Wong, C.P.: Material characterization of a high-dielectric-constant polymer-ceramic composite for embedded capacitor for RF applications. J. Appl. Polym. Sci. 92, 2228 (2004).Google Scholar
106.Kim, P., Doss, N.M., Tillotson, J.P., Hotchkiss, P.J., Pan, M.-J., Marder, S.R., Li, J., Calame, J.P., and Perry, J.W.: High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer. ACS Nano 3, 2581 (2009).Google Scholar
107.Kim, P., Jones, S.C., Hotchkiss, P.J., Haddock, J.N., Kippelen, B., Marder, S.R., and Perry, J.W.: Phosphonic acid-modiried barium titanate polymer nanocomposites with high permittivity and dielectric strength. Adv. Mater. 19, 1001 (2007).Google Scholar
108.Zhou, T., Zha, J.-W., Cui, R.-Y., Fan, B.-H., Yuan, J.-K., and Dang, Z.-M.: Improving dielectric properties of BaTiO3/ferroelectric polymer composites by employing surface hydroxylated BaTiO3 nanoparticles. ACS Appl. Mater. Interfaces 3, 2184 (2011).Google Scholar
109.Liu, S., Zhai, J., Wang, J., Xue, S., and Zhang, W.: Enhanced energy storage density in poly(vinylidene fluoride) nanocomposites by a small loading of suface-hydroxylated Ba0.6Sr0.4TiO3 nanofibers. ACS Appl. Mater. Interfaces 6, 1533 (2014).Google Scholar
110.Lee, H., Dellatore, S.M., Miller, W.M., and Messersmith, P.B.: Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426 (2007).Google Scholar
111.Song, Y., Shen, Y., Liu, H., Lin, Y., Li, M., and Nan, C.-W.: Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer matrix. J. Mater. Chem. 22, 16491 (2012).Google Scholar
112.Tang, H., Lin, Y., and Sodano, H.A.: Enhanced energy storage in nanocomposite capacitors through aligned PZT nanowires by uniaxial strain assembly. Adv. Energy Mater. 2, 469 (2012).Google Scholar
113.Wang, Y.U. and Tan, D.Q.: Computational study of filler microstructure and effective property relations in dielectric composites. J. Appl. Phys. 109, 104102 (2011).Google Scholar
114.Wang, Y.U., Tan, D.Q., and Krahn, J.: Computational study of dielectric composites with core–shell filler particles. J. Appl. Phys. 110, 044103 (2011).CrossRefGoogle Scholar
115.Tomer, V. and Randall, C.A.: High field dielectric properties of anisotropic polymer–ceramic composites. J. Appl. Phys. 104, 074106 (2008).Google Scholar
116.Boggs, S.: Analytical approach to breakdown under impulse conditions. IEEE Trans. Dielectr. Electr. Insul. 11, 90 (2004).Google Scholar
117.Vogelsang, R., Farr, T., and Frohlich, K.: The effect of barriers on electrical tree propagation in composite insulation materials. IEEE Trans. Dielectr. Electr. Insul. 13, 373 (2006).Google Scholar
118.Lebedev, S.M., Gefle, O.S., and Pokholkov, Y.P.: The barrier effect in dielectrics: the role of interfaces in the breakdown of inhomogeneous dielectrics. IEEE Trans. Dielectr. Electr. Insul. 12, 537 (2005).Google Scholar
119.Li, Q., Han, K., Gadinski, M.R., Zhang, G., and Wang, Q.: High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites. Adv. Mater. 26, 6244 (2014).Google Scholar
120.Li, W., Meng, Q., Zheng, Y., Zhang, Z., Xia, W., and Xu, Z.: Electric energy storage properties of poly(vinylidene fluoride). Appl. Phys. Lett. 96, 192905 (2010).Google Scholar