Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T09:43:00.829Z Has data issue: false hasContentIssue false

Laboratory and near-earth space plasma as a key to the plasma universe

Published online by Cambridge University Press:  09 March 2009

Carl-Gunne Fälthammar
Affiliation:
Department of Plasma Physics, The Royal Institute of Technology, S-100 44, Stockholm, Sweden

Abstract

Experiments in the laboratory and in situ measurements in space represent an essential, but often overlooked, key to reliable understanding of our plasma universe. This will be illustrated by discussing several fundamental aspects of matter in the plasma state. They include (1) conduction of electric current, (2) magnetic-field aligned electric fields, (3) acceleration of charged particles to high energy, (4) coupling between magnetic fields and the motion of matter, (5) rapid release of magnetically stored energy, (6) chemical separation, and (7) critical-velocity interaction between plasma and neutral gas.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, R. D. 1967 Nearly Monoenergetic Electron Fluxes Detected During a Visible Aurora, Phys. Rev. Letters 18, 369372.CrossRefGoogle Scholar
Alfvén, H. 1942 On the Cosmogony of the Solar System, Stockholms Observatoriums Annaler, I. 14, No. 2.Google Scholar
Alfvén, H. 1958 On the Theory of Magnetic Storms and Aurorae, Tellus 10, 104116.CrossRefGoogle Scholar
Alfvén, H. 1977 Is the Universe Matter-Antimatter Symmetric? Antinucleon, Nucleon Interactions,Proc. Third European Symp. at Wennergren Center,Stockholm,July 9–13. 1976, Eds. Ekspong, G. and Nilsson, S., Pergamon Press, Oxford.Google Scholar
Alfvén, H. 1978 Double Radio sources and the New Approach to Cosmical Plasma Physics, Astrophys. Space Sci., 54, 279292.Google Scholar
Alfvén, H. 1979 Annihilation Model of the QSOs, Astrophys. Space Sci., 64, 401.CrossRefGoogle Scholar
Alfvén, H. 1981 Cosmic Plasma, (D. Reidel Publ. Co., Dordrecht, Holland).Google Scholar
Alfvén, H. 1984 Cosmogony as an Extrapolation of Magnetospheric Research, Space Sci. Rev., 39, 6590.Google Scholar
Alfvén, H. 1986a The Plasma Universe, Physics Today, 39, 2227.CrossRefGoogle Scholar
Alfvén, H. 1986b Model of the Plasma Universe, IEEE Transactions on Plasma Science, PS-14, 629.Google Scholar
Alfvén, H. 1986C Double Layers and Circuits in Astrophysics, IEEE Transactions on Plasma Science, PS-14, 779.CrossRefGoogle Scholar
Alfvén, H. & Arrhenius, G. 1976 Evolution of the Solar System, NASA Scientific Publ. 345, (US Government Printing Office, Washington D.C.).Google Scholar
Alfvén, H. & Carlqvist, P. 1967 Currents in the Solar Atmosphere and a Theory of Solar Flares, Solar Phys., 1, 220.Google Scholar
Alfvén, H. & Falthammar, C.-G. 1963 Cosmical Electrodynamics, Fundamental Principles, (Clarendon Press, Oxford).Google Scholar
Atkinson, G. 1984 The Role of Currents in Plasma Redistribution Magnetospheric Currents, AGU Geophysical Monograph 28, Ed. Potemra, T. (Proc. Chapman Conf. on Magnetosphere Current Systems,Irvington, Virginia,April 5–8, 1983), 28, 325330.Google Scholar
Block, L. P. 1984 Three-Dimensional Potential Structure Associated with Birkeland Currents, Magnetospheric Currents, AGU Geophysical Monograph 28, Ed. Potemra, T. (Proc. Chapman Conf. on Magnetosphere Current Systems,Irvington, Virginia,April 5–8, 1983), 28, 315324.Google Scholar
Block, L. P. 1987 Acceleration of Auroral Particles by Magnetic Field-Aligned Electric Fields,Invited paper at the 8th ESA Symposium on European Rocket and Balloon Programs and Related Research, Sunne,Sweden,May 17–23.Google Scholar
Block, L. P. & Falthammar, C.-G. 1969 Field-Aligned Currents and Auroral Precipitation in Atmospheric Emission,Proc. NATO Adv. Study Inst.,As, Norway,July 29–August 9, 1968, Ed. McCormac, B. M. and Moholt, A., 285.Google Scholar
Bohm, M. & Torven, S. 1987 Electric Fields Along the Magnetic Field in a Collision-free Laboratory Plasma,1987 Int. Conf. on Plasma Physics, Kiev, USSR, Proc. Contr. Papers, Vol. 2, p. 306.Google Scholar
Brenning, N. et al. 1981 Energization of Electrons in a Plasma Beam Entering a Curved Magnetic Field, Plasma Physics, 23, 559574.CrossRefGoogle Scholar
Bryant, D. A. 1987 Wave Acceleration of Auroral Electrons,Invited paper at the Eighth ESA Symposium on European Rockets and Balloon Programs and Related Research, Sunne,Sweden,May 17–23.Google Scholar
Carlqvist, P. 1969 Current Limitations and Solar Flares, Solar Physics, 7, 377392.CrossRefGoogle Scholar
Carlqvist, P. 1979 A Flare Associated Mechanism for Solar Surges, Solar Physics, 63, 353367.CrossRefGoogle Scholar
Carlqvist, P. 1982 On the Physics of Relativistic Double Layers, Astrophys. Space Sci., 87, 2139.Google Scholar
Carlqvist, P. 1986 On the Acceleration of Energetic Cosmic Particles by Electrostatic Double Layers, IEEE Transactions on Plasma Science, PS-14, 794.Google Scholar
Carlqvist, P. & Bostrom, R. 1970 Space-Charge Regions above the Aurora, J. Geophys. Res. Space Physics, 75, 7140.CrossRefGoogle Scholar
Carpenter, R. T. & Torven, S. 1987 The Current-Voltage Characteristic and Potential Oscillations of a Double Layer in a Triple Plasma Device, TRITA-EPP-86–05, Dept. of Plasma Physics, The Royal Institute of Technology, S-100 44 Stockholm, Sweden, Laser and Particle Beams 5, 325.Google Scholar
Chang, T., (editor-in-chief.) 1986 Ion Acceleration in the Magnetosphere and Ionosphere, Geophysical Monograph 38, American Geophysical Union, Washington, D.C.Google Scholar
Chappell, C. R. 1986 The Ionosphere as a Particle Source for the Magnetosphere,6th International Symposium on Solar Terrestrial Physics,Toulouse3 June–5 July, paper STP III 112.Google Scholar
Chen, M. W. et al. 1987 Ion Cyclotron Heating of Heavy Ions in the Equatorial Magnetosphere: A Numerical Simulation Study, Report PG–1042, Center for Plasma Physics and Fusion Engineering, University of California, Los Angeles.Google Scholar
Danielsson, L. 1973 Review of Critical Velocity of Gas-Plasma Interaction I. Experimental Observations, Astrophys. Space Sci., 24, 459485.Google Scholar
Evans, D. S. 1968 The Observations of a Near Monoenergetic Flux of Auroral Electrons, J. Geophys. Res., 73, 23152323.Google Scholar
Fahleson, U. 1961 Experiments with Plasma Moving through Neutral Gas, Phys. Fluids, 4, 123.Google Scholar
Fälthammar, C.-G. 1977 Problems Related to Macroscopic Electric Fields in the Magnetosphere, Rev. Geophys. Space Phys., 15, 457466.Google Scholar
Fäalthammar, C.-G. 1978 Generation Mechanisms for Magnetic-Field-Aligned Electric Fields in the Magnetosphere, J. Geomagn. Geoelectr., 30, 419434.CrossRefGoogle Scholar
Fälthammar, C.-G. 1983 Magnetic-Field-Aligned Electric Fields, ESA Journal, 7, 385404.Google Scholar
Fäalthammar, C.-G. 1985 Magnetosphere-Ionosphere Coupling, ESA SP-235, 107133.Google Scholar
Fälthammar, C.-G. 1986 Magnetosphere-Ionosphere Interactions Near-Earth Manifestations of the Plasma Universe, IEEE Transactions on Plasma Science, PS-14, 616.Google Scholar
Fälthammar, C.-G. et al. 1978 The Significance of Magnetospheric Research for Progress in Astrophysics, Nature, 275, 185188.CrossRefGoogle Scholar
Forrest, D. et al. 1986 Very Energetic Gamma Rays from the 3 June 1982 Solar Flare, To be published in Adv. Space Res., Proceedings of the 1986 COSPAR Meeting.Google Scholar
Galeev, A. A. et al. 1986 Critical Ionization Velocity Effects in the Inner Coma of Comet Halley: Measurements by Vega-2, Geophys. Res. Lett., 13, 845848.Google Scholar
Haerendel, G. 1982 Alfvén's Critical Velocity Effect Tested in Space, Zeitschrift für Naturforschung, 37a, 728.Google Scholar
Haerendel, G. 1986 Plasma Flow and Critical Velocity Ionization in Cometary Comae, Geophys. Res. Lett., 13, 255258.CrossRefGoogle Scholar
Hershkowitz, N. 1985 Review of Recent Laboratory Double Layer Experiments, Space Sci. Rev. 41, 351.Google Scholar
Hora, H., Lalousis, P., Eliezer, S. 1984 Phys. Rev. Lett., 53, 1650.CrossRefGoogle Scholar
Hora, H. 1985 Laser and Particle Beams 3, 59.CrossRefGoogle Scholar
Hultqvist, B. 1985a The Hot Ion Composition in the Magnetosphere, In Results of the ARCAD 3 Project, p. 177, CEPAD, Toulouse.Google Scholar
Hultqvist, B. 1985b Observations of Low Energy Magnetospheric Plasma Outside the Plasmasphere, Space Science Rev., 42, 275.Google Scholar
Iizuka, S. et al. 1985 Double Layer Dynamics in a Collisionless Magnetoplasma, J. Phys. Soc., Japan 54, 2516.Google Scholar
Inuzuka, H. et al. 1985 Observation of a Current-Limited Double Layer in a Linear Turbulent-Heating Device, Phys. Fluids, 28, 703.CrossRefGoogle Scholar
Jacobsen, C. & Carlqvist, P. 1964 Solar Flares Caused by Interruptions, Icarus, 3, 270.Google Scholar
Johnson, R. G. (Ed.) 1983 Energetic Ion Composition in the Earth's Magnetosphere, Terra Scientific Publ. Co., Tokyo and D. Reidel Publ. Co., Dordrecht.Google Scholar
Knight, S. 1973 Parallel Electric Fields, Planet Space Sci., 21, 741750.Google Scholar
Lemaire, J. & Scherer, M. 1974 Ionosphere Plasma-Sheet Field-Aligned Currents and Parallel Electric Fields, Planet. Space Sci., 22, 14851490.Google Scholar
Lemaire, J. & Scherer, M. 1983 Field-Aligned Current Density Versus Electric Potential Characteristics for Magnetospheric Flux Tubes, Annales Geophysicae, 1, 9196.Google Scholar
Lehnert, B. et al. 1966 Critical Voltage of a Rotating Plasma, Nucl. Fus., 6, 231238.Google Scholar
Lindberg, L. 1978 Plasma Flow in a Curved Magnetic Field, Astrophys. Space Sci., 55, 203225.Google Scholar
Lindeman, R. A. et al. 1974 The Interaction between an Impact-Produced Neutral Gas Cloud and the Solar Wind at the Lunar Surface, J. Geophys. Res., 79, 2287.Google Scholar
Lundin, R. & Sandahl, I. 1978 Some Characteristics of the Parallel Electric Field Acceleration of Electrons over Discrete Auroral Arcs as Observed from two Rocket Flights, ESA SP-135, 125136.Google Scholar
Lyons, L. R. et al. 1979 An Observed Relation Between Magnetic Field Aligned Electric Fields and Downeward Electron Energy Fluxes in the Vicinity of Auroral Forms, J. Geophys. Res., 84, 457461.Google Scholar
McIlwain, C. E. 1960 Direct Measurement of Particles Producing Visible Auroras, J. Geophys. Res., 65, 2727.Google Scholar
Menietti, J. D. & Burch, J. L. 1981 A Satellite Investigation of Energy Flux and Inferred Potential Drop in Auroral Electron Energy Spectra, Geophys. Res. Lett., 8, 10951098.Google Scholar
Möbius, E. et al. 1979 Determination of the Plasmaparameters and the Suprathermal Microfields in a Critical Velocity Rotating Plasma, Z. Nataurforsch. 34a, 405413.Google Scholar
Newell, P. T. 1985 Review of the Critical Ionization Velocity Effect in Space, Rev. Geophys., 23, 93104.Google Scholar
Papadopoulos, K. 1977 A Review of Anomalous Resistivity for the Ionosphere, Rev. Geophys. Space Phys., 15, 113.Google Scholar
Pellinen, R. J. & Heikkila, W. J. 1978 Energization of Charged Particles to High Energies by an Induced Substorm Electric Field Within the Magnetotail, J. Geophys. Res. 83, 1544.Google Scholar
Pellinen, R. J. & Heikkila, W. J. 1984 Inductive Electric Fields in the Magnetotail and Their Relation to Auroral and Substorm Phenomena, Space Sci. Rev. 37, 1.Google Scholar
Petelski, E. F. et al. 1980 Enhanced Interaction of the Solar Wind and the Interstellar Neutral Gas by Virtue of a Critical Velocity Effect, Astron. Astrophys., 87, 20.Google Scholar
Shawhan, S. D. 1976 Io Sheath-Accelerated Electrons and Ions, J. Geophys. Res., 81, 33733379.Google Scholar
Shawhan, S. D. et al. 1978 On the Nature of Large Auroral Zone Electric Fields at One RE Altitude, J. Geophys. Res., 83, 10491054.Google Scholar
Shelley, E. G. 1986 Magnetospheric Energetic Ions from the Earth's Ionosphere, Paper 9.3.1 at the Symposium “Physics of the Thermal Plasma in the Magnetosphere” at the 26th COSPAR Assembley.Toulouse30 June–11 July 1986, to be published in Adv. Space. Res.Google Scholar
Shelley, E. G. et al. 1972 Satellite Observations of Energetic Heavy Ions during a Geomagnetic Storm, J. Geophys. Res., 77, 61046110.Google Scholar
Shelley, E. G. et al. 1976 Satellite Observations of an Ionospheric Acceleration Mechanism, Geophys. Res. Lett., 3, 654656.Google Scholar
Shelley, E. G. et al. 1982 The Polar Ionosphere as a Source of Energetic Magnetospheric Plasma, Geophys. Res. Lett., 9, 941944.Google Scholar
Sherman, J. C. 1973 Review of the Critical Velocity of Gas-Plasma Interaction II: Theory, Astrophys. Space Sci., 24, 487.Google Scholar
Srnka, L. J. 1977 Critical Velocity Phenomena and the LTP, Physics of the Earth and Planetary Interiors, 14, 321329.Google Scholar
Swift, D. W. 1975 On the Formation of Auroral Arcs and Acceleration of Auroral Electrons, J. Geophys. Res., 80, 2096.Google Scholar
Torvén, S. 1979 Formation of Double Layers in Laboratory Plasmas, Wave Instabilities in Space Plasmas, P. 109, Palmadesso, P. J. and Papadopoulos, K. (eds.), Reidel Publ Co.CrossRefGoogle Scholar
Torvén, S. et al. 1985 Spontaneous Transfer of Magnetically Stored Energy to Kinetic Energy by Electric Double Layers, Plasma Physics and Controlled Fusion, 27, 143158.CrossRefGoogle Scholar
Venkataramani, N. & Mattoo, S. K. 1980 On Plasma-Neutral Gas Interaction, Pramana, 15, 117136.Google Scholar
Yeah, H.-C. & Hill, T. W. 1981 Mechanism of Parallel Electric Fields Inferred From Observations, J. Geophys. Res., 86, 67066712.Google Scholar