Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T12:54:06.467Z Has data issue: false hasContentIssue false

Enhancement in physical properties of barium hexaferrite with substitution

Published online by Cambridge University Press:  25 August 2015

Talwinder Kaur
Affiliation:
Department of Physics, Lovely Professional University, Phagwara, Punjab 144411, India
Sachin Kumar
Affiliation:
Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab 143005, India
Bilal H. Bhat
Affiliation:
Department of Physics, University of Kashmir, Kashmir 190006, India
Ajeet Kumar Srivastava*
Affiliation:
Department of Physics, Lovely Professional University, Phagwara, Punjab 144411, India
*
a)Address all correspondence to this author. e-mail: srivastava_phy@yahoo.co.in
Get access

Abstract

M-type barium hexaferrite powders were synthesized using modified Pechini sol gel auto combustion method. The powder samples were heat treated at 900 °C for 5 h and were subjected to the structural, thermal, dielectric, magnetic, and optical studies. X-ray powder diffraction patterns show the formation of pure phase of M-type hexaferrite. Thermal analysis reveals that the weight loss of precursor becomes constant after 680 °C. The presence of two prominent peaks near 430 and 580 cm−1 in Fourier transform infrared spectroscopy spectra indicates the formation of M-type hexaferrites. The MH curve has been used to study the magnetic behavior. The maximum value of coercivity is found for x = 0.41, which is higher than that of the pure barium hexaferrite. The band gap dependency on composition was studied using UV–Vis NIR spectroscopy. It was found that the dielectric constant is high at low frequency and decreases with an increase in frequency. Hexagonal structure of hexaferrite is visualized in transmission electron images.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Radwan, M., Rashad, M.M., and Hessien, M.M.: Synthesis and characterization of barium hexaferrite nanoparticles. J. Mater. Process. Technol. 181, 106 (2007).Google Scholar
Gonzalez-Carreno, T., Morales, M.P., and Serna, C.J.: Barium ferrite nanoparticles prepared directly by aerosol pyrolysis. Mater. Lett. 43, 97 (2000).CrossRefGoogle Scholar
Cernea, M., Sandu, S.G., Galassi, C., Radu, R., and Kuncser, V.: Magnetic properties of BaxSr1−xFe12O19 (x = 0.05–0.35) ferrites prepared by different methods. J. Alloys Compd. 561, 121 (2013).Google Scholar
Bhattacharya, P., Dhibar, S., Hatui, G., Mandal, A., Das, T., and Das, C.K.: Graphene decorated with hexagonal shaped M-type ferrite and polyaniline wrapper: A potential candidate for electromagnetic wave absorbing and energy storage device applications. RSC Adv. 4, 17039 (2014).Google Scholar
Navau, C., Prat-Camps, J., Romero-Isart, O., Cirac, J.I., and Sanchez, A.: Long-distance transfer and routing of static magnetic fields. Phys. Rev. Lett. 112, 253901 (2014).CrossRefGoogle ScholarPubMed
Ashiq, M.N., Iqbal, M.J., Najam-ul-Haq, M., Gomez, P.H., and Qureshi, A.M.: Synthesis, magnetic and dielectric properties of Er–Ni doped Sr-hexaferrite nanomaterials for applications in high density recording media and microwave devices. J. Magn. Magn. Mater. 324, 15 (2012).Google Scholar
Patel, H.A., Byun, J., and Yavuz, C.T.: Arsenic removal by magnetic nano-crystalline barium hexaferrite. J. Nanopart. Res. 14, 881 (2012).Google Scholar
Anbarasu, V., Md Gazzali, P.M., Karthik, T., Manigandan, A., and Sivakumar, K.: Effect of divalent cation substitution in the magnetoplumbite structured BaFe12O19 system. J. Mater. Sci.: Mater. Electron. 24, 916 (2013).Google Scholar
Jianxun, Q., Qiguo, Z., Mingyuan, G., and Shen, H.: Effect of aluminum substitution on microwave absorption properties of barium hexaferrite. J. Appl. Phys. 98, 103905 (2005).Google Scholar
Thakur, A., Singh, R.R., and Barman, P.B.: Synthesis and characterizations of Nd3+ doped SrFe12O19 nanoparticles. Mater. Chem. Phys. 141, 562 (2013).CrossRefGoogle Scholar
Pereira, F.M.M., Junior, C.A.R., Santos, M.R.P., Sohn, R.S.T.M., Freire, F.N.A., Sasaki, J.M., de Paiva, J.A.C., and Sombra, A.S.B.: Structural and dielectric spectroscopy studies of the M-type barium strontium hexaferrite alloys (BaxSr1–xFe12O19). J. Mater. Sci.: Mater. Electron. 19, 627 (2008).Google Scholar
Khademi, F., Poorbafrani, A., Kameli, P., and Salamati, H.: Structural, magnetic and microwave properties of Eu-doped barium hexaferrite powders. J. Supercond. Novel Magn. 25, 525 (2012).CrossRefGoogle Scholar
Winotai, P., Thongmee, S., and Tang, I.M.: Cation distribution in bismuth-doped M-type barium hexaferrite. Mater. Res. Bull. 35, 1747 (2000).Google Scholar
Dhage, V.N., Mane, M.L., Keche, A.P., Birajdar, C.T., and Jadhav, K.M.: Structural and magnetic behaviour of aluminium doped barium hexaferrite nanoparticles synthesized by solution combustion technique. Phys. B 406, 789 (2011).CrossRefGoogle Scholar
Bsoul, I. and Mahmood, S.H.: Magnetic and structural properties of BaFe12−xGaxO19 nanoparticles. J. Alloys Compd. 489, 110 (2010).CrossRefGoogle Scholar
Ounnunkad, S.: Improving magnetic properties of barium hexaferrites by La or Pr substitution. Solid State Commun. 138, 472 (2006).Google Scholar
Xiaogu, H., Jing, Z., Hongzhou, W., Shaoteng, Y., Lixi, W., and Qitu, Z.: Er3+-substituted W-type barium ferrite: Preparation and electromagnetic properties. J. Rare Earths 28, 940 (2010).Google Scholar
Feng, H., Fernandez- Garcia, L., Liu, X.S., Zhu, D-R., Suárez, M., and Menendez, J.L.: A strong magneto-optical activity in rare-earth La3+ substituted M-type strontium ferrites. J. Appl. Phys. 109, 113906 (2011).Google Scholar
Sozeri, H., Kuucuk, I., and Ozkan, H.: Improvement in magnetic properties of La substituted BaFe12O19 particles prepared with an unusually low Fe/Ba molar ratio. J. Magn. Magn. Mater. 323, 1799 (2011).CrossRefGoogle Scholar
Ali, I., Islam, M.U., Awan, M.S., Ahmad, M., and Iqbal, M.A.: Structural, electrical, and microstructure properties of nanostructured calcium doped Ba-hexaferrites synthesized by sol–gel method. J. Supercond. Novel Magn. 26, 3277 (2013).Google Scholar
Tehrani, M.K., Ghasemi, A., Moradi, M., and Alam, R.S.: Wideband electromagnetic wave absorber using doped barium hexaferrite in Ku-band. J. Alloys Compd. 509, 8398 (2011).Google Scholar
Gregori, M.L., Pinho, M.S., Lima, R.C., Leandro, J.C.S., and Ogasawara, T.: Effect of different dopants on the microwave properties of m-doped barium hexaferrites. Key Eng. Mater. 264268, 1229 (2004).Google Scholar
Liu, X., Hernández-Gómez, P., Huang, K., Zhou, S., Wang, Y., Cai, X., Sun, H., and Ma, B.: Research on La3+–Co2+-substituted strontium ferrite magnets for high intrinsic coercive force. J. Magn. Magn. Mater. 305, 524 (2006).Google Scholar
Kaur, T., Kaur, B., Bhat, B.H., Kumar, S., and Srivastava, A.K.: Effect of calcination temperature on microstructure, dielectric, magnetic and optical properties of Ba0.7La0.3Fe11.7Co0.3O19 hexaferrite. Phys. B 456, 206 (2015).Google Scholar
Belous, A.G., V’yunov, O.I., Pashkova, E.V., Ivanitskii, V.P., and Gavrilenko, O.N.: Mossbauer study and magnetic properties of M-type barium hexaferrite doped with Co+ Ti and Bi + Ti ions. J. Phys. Chem. B 110, 26477 (2006).Google Scholar
Liu, Y., Drew, M.G.B., Liu, Y., Wang, J., and Zhang, M.: Preparation, characterization and magnetic properties of the doped barium hexaferrites BaFe12−2xCox/2Znx/2SnxO19, x=0.0–2.0. J. Magn. Magn. Mater. 322, 814 (2010).Google Scholar
Leccabue, F., Panizzieri, R., Garcia, S., Suarez, N., Sanchez, J.L., Ares, O., and Hua, X.R.: Magnetic and mössbauer study of rare-earth-substituted M-, W- and X-type hexagonal ferrites. J. Mater. Sci. 25, 2765 (1990).Google Scholar
Corral-Huacuz, J.C. and Mendoza-Suárez, G.: Preparation and magnetic properties of Ir–Co and La–Zn substituted barium ferrite powders obtained by sol–gel. J. Magn. Magn. Mater. 242, 430 (2002).Google Scholar
Tokunaga, Y., Kaneko, Y., Okuyama, D., Ishitawa, S., Arima, T., Wakimoto, S., Kakurai, K., Taguchi, Y., and Tokura, Y.: Multiferroic M-type hexaferrites with a room-temperature conical state and magnetically controllable spin helicity. Phys. Rev. Lett. 105, 257201 (2010).Google Scholar
Ghasemi, A.: Remarkable influence of carbon nanotubes on microwave absorption characteristics of strontium ferrite/CNT nanocomposites. J. Magn. Magn. Mater. 323, 3133 (2011).CrossRefGoogle Scholar
Soman, V.V., Nanoti, V.M., and Kulkarni, D.K.: Dielectric and magnetic properties of Mg–Ti substituted barium hexaferrite. Ceram. Int. 39, 5713 (2013).Google Scholar
Ataie, A. and Mali, A.: Characteristics of barium hexaferrite nanocrystalline powders prepared by a sol–gel combustion method using inorganic agent. J. Electroceram. 21, 357 (2008).CrossRefGoogle Scholar
Safronov, A.P., Samatov, O.M., Medvedev, A.I., Beketov, I.V., and Murzakaev, A.M.: Synthesis of strontium hexaferrite nanopowder by the laser evaporation method. Nanotechnol. Russ. 7, 486 (2012).Google Scholar
Liu, X., Wang, J., Gan, L.M., Ng, S.C., and Ding, J.: An ultrafine barium ferrite powder of high coercivity from water-in-oil microemulsion. J. Magn. Magn. Mater. 184, 344 (1998).Google Scholar
Dimri, M.C., Kashyap, S.C., and Dube, D.C.: Electrical and magnetic properties of barium hexaferrite nanoparticles prepared by citrate precursor method. Ceram. Int. 30, 1623 (2004).Google Scholar
Li, H., Huang, J., Li, Q., and Su, X.: Preparation of barium ferrite films with high Fe/Ba ratio by sol–gel method. J. Sol-Gel Sci. Technol. 52, 309 (2009).Google Scholar
Gonzalez-Angeles, A., Mendoza-Suárez, G., Grusková, A., Tóth, I., Jančárik, V., Papánová, M., and Escalante-Garcı, J.I.: Magnetic studies of NiSn-substituted barium hexaferrites processed by attrition milling. J. Magn. Magn. Mater. 270, 77 (2004).Google Scholar
Qin, L. and Verweij, H.: Modified Pechini synthesis of hexaferrite Co2Z with high permeability. Mater. Lett. 68, 143 (2012).CrossRefGoogle Scholar
Zhao, W.Y., Wei, P., Cheng, H.B., Tang, X.F., and Zhang, Q.J.: FTIR spectra, lattice shrinkage, and magnetic properties of CoTi-substituted M-type barium hexaferrite nanoparticles. J. Am. Ceram. Soc. 90, 2095 (2007).Google Scholar
Iqbal, M.J. and Ashiq, M.N.: Physical and electrical properties of Zr–Cu substituted strontium hexaferrite nanoparticles synthesized by co-precipitation method. Chem. Eng. J. 136, 383 (2008).CrossRefGoogle Scholar
Ali, I., Islam, M.U., Awan, M.S., Ahmad, M., and Iqbal, M.A.: Structural and magnetic properties of nano-structured Eu3+ substituted M-type hexaferrites synthesized by sol–gel auto-combustion technique. J. Supercond. Novel Magn. 26, 3315 (2013).Google Scholar
Thakur, A., Singh, R.R., and Barman, P.B.: Structural and magnetic properties of La3+ substituted strontium hexaferrite nanoparticles prepared by citrate precursor method. J. Magn. Magn. Mater. 326, 35 (2013).Google Scholar
Ilican, S., Caglar, M., and Caglar, Y.: Determination of the thickness and optical constants of transparent indium-doped ZnO thin films by the envelope method. Mater. Sci.-Pol. 25, 709 (2007).Google Scholar
Song, F., Shen, X., Xiang, J., and Song, H.: Formation and magnetic properties of M-Sr ferrite hollow fibers via organic gel-precursor transformation process. Mater. Chem. Phys. 120, 213 (2010).Google Scholar
Tehrani, F.S., Daadmehr, V., Rezakhani, A.T., Akbarnejad, R.H., and Gholipour, S.: Structural, magnetic, and optical properties of zinc- and copper-substituted nickel ferrite nanocrystals. J. Supercond. Novel Magn. 25, 2443 (2012).Google Scholar
Singh, J.P., Dixit, G., Srivastava, R.C., Agrawal, H.M., and Asokan, K.: Looking for the possibility of multiferroism in NiGd0.04Fe1.96O4 nanoparticle system. J. Phys. D: Appl. Phys. 44, 435306 (2011).Google Scholar
Tang, X., Zhao, B.Y., and Hu, K.A.: Preparation of M-Ba-ferrite fine powders by sugar-nitrates process. J. Mater. Sci. 41, 3867 (2006).Google Scholar
Poorbafrani, A., Kameli, P., and Salamati, H.: Structural, magnetic and electromagnetic wave absorption properties of SrFe12O19/ZnO nanocomposites. J. Mater. Sci. 48, 186 (2013).Google Scholar
Singh, A., Narang, S.B., Singh, K., Pandey, O.P., and Kotnala, R.K.: Electrical and magnetic properties of rare earth substituted strontium hexaferrites. J. Ceram. Process. Res. 11, 241 (2010).Google Scholar
Ali, I., Islam, M.U., Awan, M.S., and Ahmad, M.: Effects of heat-treatment temperature on the microstructure, electrical and dielectric properties of M-type hexaferrites. J. Electron. Mater. 43, 512 (2014).Google Scholar
Narang, S.B. and Hudiara, I.S.: Microwave dielectric properties of M-Type barium, calcium and strontium hexaferrite substituted with Co and Ti. J. Ceram. Process. Res. 7, 113 (2006).Google Scholar
Ali, I., Islam, M.U., Awan, M.S., and Ahmad, M.: Effects of heat-treatment time on the structural, dielectric, electrical, and magnetic properties of BaM hexaferrite. J. Mater. Eng. Perform. 22, 2104 (2013).CrossRefGoogle Scholar
Karmakar, M., Mondal, B., Pal, M., and Mukherjee, K.: Acetone and ethanol sensing of barium hexaferrite particles: A case study considering the possibilities of non-conventional hexaferrite sensor. Sens. Actuators, B 190, 627 (2014).Google Scholar
Anjum, S., Rafique, M.S., Khaleeq-ur-Rahman, M., Siraj, K., Usman, A., Hussain, S.I., and Naseem, S.: Investigation of induced parallel magnetic anisotropy at low deposition temperature in Ba-hexaferrites thin films. J. Magn. Magn. Mater. 324, 711 (2012).CrossRefGoogle Scholar
Rawat, M. and Yadav, K.L.: Study of structural, electrical, magnetic and optical properties of 0.65BaTiO3–0.35Bi0.5Na0.5TiO3–BiFeO3 multiferroic composite. J. Alloys Compd. 597, 188 (2014).Google Scholar
Nourbakhsh, A.A., Vahedi, A., Nemati, A., Noorbakhsh, M., Mirsatari, S.N., Shaygan, M. and Mackenzie, K.J.D.: Optimization of the magnetic properties and microstructure of Co2+–La3+ substituted strontium hexaferrite by varying the production parameters. Ceram. Int. 40, 5675 (2014).Google Scholar
Masoudpanah, S.M., Seyyed Ebrahimi, S.A., and Ong, C.K.: Microstructure and magnetic properties of La–Co substituted strontium hexaferrite films prepared by pulsed laser deposition. J. Magn. Magn. Mater. 342, 134 (2013).Google Scholar
Nishio, H., Minachi, Y., and Yamamoto, H.: Effect of factors on coercivity in Sr–La–Co sintered ferrite magnets. IEEE Trans. Magn. 45, 5281 (2009).CrossRefGoogle Scholar
Nishio, H. and Yamamoto, H.: Effect of important factors on temperature variation of coercivity in Sr-La-co high-performance sintered ferrite magnets. IEEE Trans. Magn. 47, 3641 (2011).Google Scholar
Oliva, M.I., Bercoff, P.G., and Bertorello, H.R.: Application of FORC distributions to the study of magnetic interactions in ferrites of composition Ba1−xLax+δFe12−xCoxO19 . J. Magn. Magn. Mater. 320, e100 (2008).Google Scholar
Kools, F., Morel, A., Grossinger, R., Le Breton, J.M., and Tenaud, P.: LaCo-substituted ferrite magnets, a new class of high-grade ceramic magnets; intrinsic and microstructural aspects. J. Magn. Magn. Mater. 242245, 1270 (2002).Google Scholar
Lechevallier, L., Le Breton, J.M., Teillet, J., Morel, A., Kools, F., and Tenaud, P.: Mossbauer investigation of Sr1−xLaxFe12−yCoyO19 ferrites. Phys. B 327, 135 (2003).Google Scholar