Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-25T00:09:37.093Z Has data issue: false hasContentIssue false

Quasiparticle theoretical characterization of electronic and optical properties of the photocatalytic material Ti3−δO4N

Published online by Cambridge University Press:  13 July 2015

Mauro Ribeiro Jr.*
Affiliation:
OORBIT Office of Operational Research for Business Intelligence & Technology, Principal Office, USA
*
a)Address all correspondence to this author. e-mail: ribeiro.jr@oorbit.com.br
Get access

Abstract

Self-energy correction density functional theory local density approximation–1/2 (LDA-1/2) method was successfully applied to predict the electronic structure and optical properties of the N-doped, Ti-vacant Ti3−δO4N oxynitride [G. Hyett et al., J. Am. Chem. Soc.129, 15541–15548 (2007)], which was shown experimentally to be more photocatalytic than titania. The procedure takes into consideration of the two possible types of Ti vacancies (with different numbers of nitrogen and oxygen neighbors) and their formation energies, according to the experimental data on fractional occupancies, with potential effects on the electronic structure and photocatalyst mechanisms analyzed. Different defective model structures were calculated for optimal final configuration, whose optical calculations revealed massive damping in infrared spectrum, while transparency in green region. The band gap determined by our methodology is 2.5 eV, in close agreement to the experimental value of 2.6(1) eV. Results presented in this work represent the first report of an electronic structure modeling of Ti3−δO4N, which is a starting point to help provide an understanding of its photocatalytic activity.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Walsh, A., Ahn, K-S., Shet, S., Huda, M.N., Deutsch, T.G., Wang, H., Turner, J.A., Wei, S-H., Yana, Y., and Al-Jassima, M.M.: Ternary cobalt spinel oxides for solar driven hydrogen production: Theory and experiment. Energy Environ. Sci. 2, 774782 (2009).CrossRefGoogle Scholar
Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 37, 238 (1972).Google Scholar
Linsebigler, A.L., Lu, G., and Yates, J.T.: Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 95, 735758 (1995).CrossRefGoogle Scholar
Tang, H., Levy, F., Berger, H., and Schmid, P.E.: Urbach tail of anatase TiO2 . Phys. Rev. B 52, 77717774 (1995).Google Scholar
Tang, H.B.H., Schmid, P.E., Lévy, F., and Burri, G.: Photoluminescence in TiO2 anatase single crystals. Solid State Commun. 87, 847850 (1993).Google Scholar
Batzill, M., Morales, E.H., and Diebold, U.: Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase. Phys. Rev. Lett. 96, 026103 (2006).CrossRefGoogle ScholarPubMed
Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001).Google Scholar
Hyett, G., Green, M.A., and Parkin, I.P.: The use of combinatorial chemical vapor deposition in the synthesis of Ti3−δO4N with 0.06 < δ < 0.25: A titanium oxy-nitride phase isostructural to anosovite. J. Am. Chem. Soc. 129, 1554115548 (2007).CrossRefGoogle Scholar
Hohenberg, P. and Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864B871 (1964).Google Scholar
Kohn, W. and Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133A1138 (1965).CrossRefGoogle Scholar
Wang, J., Tafen, D.N., Lewis, J.P., Hong, Z., Manivannan, A., Zhi, M., Li, M., and Wu, N.: Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. J. Am. Chem. Soc. 131, 1229012297 (2009).Google Scholar
Onida, G., Reining, L., and Rubio, A.: Electronic excitations: Density-functional versus many-body Green’s-function approaches. Rev. Mod. Phys. 74, 601 (2002).Google Scholar
Fiolhais, C., Nogueira, F., and Marques, M. eds.: A Primer in Density Functional Theory, 1st ed. (Springer, New York, 2002).Google Scholar
Foulkes, W.M.C., Mitas, L., Needs, R.J., and Rajagopal, G.: Quantum Monte Carlo simulations of solids. Rev. Mod. Phys. 73, 3383 (2001).Google Scholar
Ribeiro, M. Jr.: Application of the GGA-1/2 excited-state correction method to p-electron defective states: The special case of nitrogen-doped TiO2 . Can. J. Phys. 93(3), 261266 (2015).Google Scholar
Ribeiro, M. Jr. and Shevlin, S.: Self-energy corrected ab initio simulation of the photo-catalytic material nitrogen doped rutile TiO2 . Sci. Adv. Mater. 7, 623630 (2015).Google Scholar
Janak, J.F.: Proof that ∂E/∂ni=ε in density-functional theory. Phys. Rev. B 18, 7165 (1978).CrossRefGoogle Scholar
Slater, J.C. and Johnson, K.H.: Self-consistent-field Xα cluster method for polyatomic molecules and solids. Phys. Rev. B 5, 844 (1972).CrossRefGoogle Scholar
Mauro Ribeiro, J., Fonseca, L.R.C., and Ferreira, L.G.: Accurate prediction of the Si/SiO2 interface band offset using the self-consistent ab initio DFT/LDA-1/2 method. Phys. Rev. B 79, 241312(R) (2009).CrossRefGoogle Scholar
Ribeiro, M. Jr., Fonseca, L., and Ferreira, L.G.: First-principles calculation of the AlAs/GaAs interface band structure using a self-energy–corrected local density approximation. Europhys. Lett. 94, 27001 (2011).Google Scholar
Ribeiro, M. Jr., Ferreira, L.G., Fonseca, L.R.C., and Ramprasad, R.: CdSe/CdTe interface band gaps and band offsets calculated using spin–orbit and self-energy corrections. Mater. Sci. Eng., B 177, 14601464 (2012).Google Scholar
Ribeiro, M. Jr., Fonseca, L.R.C., Sadowski, T., and Ramprasad, R.: Ab initio calculation of the CdSe/CdTe heterojunction band offset using the local-density approximation-1/2 technique with spin-orbit corrections. J. Appl. Phys. 111, 073708 (2012).Google Scholar
Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., and Sánchez-Portal, D.: The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter 14, 27452779 (2002).Google Scholar
Ceperley, D.M. and Alder, B.J.: Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566569 (1980).Google Scholar
Monkhorst, H.J. and Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 51885192 (1976).Google Scholar
Åsbrink, S. and Magnéli, A.: Crystal structure studies on trititanium pentoxide, Ti3O5 . Acta Cryst. 12, 575 (1959).Google Scholar
Hyett, G., Green, M.A., and Parkin, I.P.: Ultra-violet light activated photocatalysis in thin films of the titanium oxynitride, Ti3−δO4N. J. Photochem. Photobiol., A 203, 199203 (2009).Google Scholar
Landmann, M., Rauls, E., and Schmidt, W.G.: The electronic sructure and optical response of rutile, anatase and brookite TiO2 . J. Phys.: Condens. Matter 24, 195503 (2012).Google Scholar