Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-28T19:47:27.825Z Has data issue: false hasContentIssue false

Effect of catalyst concentration and high-temperature activation on the CO2 adsorption of carbon nanospheres prepared by solvothermal carbonization of β-cyclodextrin

Published online by Cambridge University Press:  07 May 2015

Deepthi L. Sivadas*
Affiliation:
Department of Chemistry, Indian Institute of Space Science and Technology, Trivandrum 695 547, Kerala, India; and Analytical and Spectroscopy Division, Vikram Sarabhai Space Centre, Trivandrum 695 022, Kerala, India
Rajaram Narasimman
Affiliation:
Department of Chemistry, Indian Institute of Space Science and Technology, Trivandrum 695 547, Kerala, India
Raghavan Rajeev
Affiliation:
Analytical and Spectroscopy Division, Vikram Sarabhai Space Centre, Trivandrum 695 022, Kerala, India
Kuttan Prabhakaran
Affiliation:
Department of Chemistry, Indian Institute of Space Science and Technology, Trivandrum 695 547, Kerala, India
Kovoor Ninan Ninan
Affiliation:
Department of Chemistry, Indian Institute of Space Science and Technology, Trivandrum 695 547, Kerala, India
*
a)Address all correspondence to this author. e-mail: deepthisivadas@gmail.com
Get access

Abstract

Microporous carbon nanospheres were prepared from β-cyclodextrin (β-CD) by solvothermal carbonization in o-dichlorobenzene in the presence of various concentrations of p-toluene sulfonic acid (PTSA). The contribution of PTSA toward solvothermal char (STC) was established. The STC showed the highest surface area, porosity, and CO2 sorption capacity at a PTSA to β-CD weight ratio of 2.5. The surface area, pore volume, and CO2 sorption capacity were further increased by an in situ high-temperature activation due to the oxidation of carbon at high temperature by oxygen present in the STC. The high-temperature activation reduces the significance of PTSA concentration, as the activated STC showed surface area, micropore volume, and CO2 adsorption capacity in a close range at the PTSA to β-CD weight ratio in the range of 0.04–2.50. The highest CO2 adsorption capacity of the STC increased from 2.4 to 3.5 mmol/g upon the high-temperature activation. The activated STC adsorbs significant amount (0.35 mmol/g) of CO2 from dry air containing 400 ppm CO2. The activated STC showed excellent regeneration stability and selectivity over nitrogen.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Paolo Colombo

References

REFERENCES

Li, J.R., Ma, Y., McCarthy, M.C., Sculley, J., Yu, J., Jeong, H.K., Balbuena, P.B., and Zhou, H.C.: Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord. Chem. Rev. 255(15–16), 17911823 (2011).10.1016/j.ccr.2011.02.012CrossRefGoogle Scholar
Kenarsari, S.D., Yang, D., Jiang, G., Zhang, S., Wang, J., Russell, A.G., Weif, Q., and Fan, M.: Review of recent advances in carbon dioxide separation and capture. RSC Adv. 3(45), 2273922773 (2013).10.1039/c3ra43965hCrossRefGoogle Scholar
Su, F. and Lu, C.: CO2 capture from gas stream by zeolite 13X using a dual-column temperature/vacuum swing adsorption. Energy Environ. Sci. 5(10), 90219027 (2012).10.1039/c2ee22647bCrossRefGoogle Scholar
Bonenfant, D., Kharoune, M., Niquette, P., Mimeault, M., and Hausler, R.: Advances in principal factors influencing carbon dioxide adsorption on zeolites. Sci. Technol. Adv. Mater. 9(1), 1300713014 (2008).10.1088/1468-6996/9/1/013007CrossRefGoogle ScholarPubMed
Li, T., Sullivan, J.E., and Rosi, N.L.: Design and preparation of a core–shell metal–organic framework for selective CO2 capture. J. Am. Chem. Soc. 135(6), 99849987 (2013).10.1021/ja403008jCrossRefGoogle ScholarPubMed
Jian, L., Thallapally, P.K., McGrail, B.P., Brown, D.R., and Liu, L.: Progress in adsorption-based CO2 capture by metal–organic frameworks. Chem. Soc. Rev. 41(6), 23082322 (2012).Google Scholar
Zhu, X., Do-Thanh, C-L., Murdock, C.R., Nelson, K.M., Tian, C., Brown, S., Mahurin, S.M., Jenkins, D.M., Hu, J., Zhao, B., Liu, H., and Dai, S.: Efficient CO2 capture by a 3D porous polymer derived from Tröger’s base. Macro Lett. 2(8), 660663 (2013).10.1021/mz4003485CrossRefGoogle Scholar
Lu, W., Sculley, J.P., Yuan, D., Krishna, R., Wei, Z., and Zhou, H.C.: Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas. Angew. Chem., Int. Ed. 51(30), 74807484 (2012).10.1002/anie.201202176CrossRefGoogle ScholarPubMed
Hong, S.M., Kim, S.H., and Lee, K.B.: Adsorption of carbon dioxide on 3-aminopropyl-triethoxysilane modified graphite oxide. Energy Fuels 27(6), 33583363 (2013).10.1021/ef400467wCrossRefGoogle Scholar
Sayari, A., Belmabkhout, Y., and Da’na, E.: CO2 deactivation of supported amines: Does the nature of amine matter? Langmuir 28(9), 42414247 (2012).CrossRefGoogle ScholarPubMed
Jimenez, V., Lucas, A.R., Díaz, J.A., Sanchez, P., and Romero, A.: CO2 capture in different carbon materials. Environ. Sci. Technol. 46(13), 74077414 (2012).10.1021/es2046553CrossRefGoogle ScholarPubMed
Wickramaratnea, N.P. and Jaroniec, M.: Importance of small micropores in CO2 capture by phenolic resin-based activated carbon spheres. J. Mater. Chem. A 1(1), 112116 (2013).10.1039/C2TA00388KCrossRefGoogle Scholar
Narasimman, R., Sujith, V., and Prabhakaran, K.: Carbon foam with microporous cell wall and strut for CO2 capture. RSC Adv. 4(2), 578582 (2014).10.1039/C3RA46240DCrossRefGoogle Scholar
Zhao, B., Su, Y., Tao, W., Li, L., and Peng, Y.: Post-combustion CO2 capture by aqueous ammonia: A state-of-the-art review. Int. J. Greenhouse Gas Control 9, 355371 (2012).CrossRefGoogle Scholar
Ramdin, M., de Loos, T.W., and Vlugt, T.J.H.: Carbon capture with ionic liquids: Overview and progress. Energy Environ. Sci. 5, 66686681 (2012).Google Scholar
Grasa, G., González, B., Alonso, M., and Abanades, J.C.: Comparison of CaO-based synthetic CO2 sorbents under realistic calcination conditions. Energy Fuels 21(6), 35603562 (2007).10.1021/ef0701687CrossRefGoogle Scholar
Sevilla, M. and Fuertes, A.B.: Sustainable porous carbons with superior performance for CO2 capture. Energy Environ. Sci. 4, 17651771 (2011).CrossRefGoogle Scholar
Deanna, M.D., Smit, B., and Jeffrey, R.L.: Carbon dioxide capture: Prospects for new materials. Angew. Chem., Int. Ed. 49(35), 60586082 (2010).Google Scholar
Wei, J., Zhou, D., Sun, Z., Deng, Y., Xia, Y., and Zhao, D.: A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors. Adv. Funct. Mater. 23(18), 23222328 (2013).CrossRefGoogle Scholar
Balsamo, M., Budinova, T., Erto, A., Lancia, A., Petrova, B., Petrov, N., and Tsyntsarski, B.: CO2 adsorption onto synthetic activated carbon: Kinetic, thermodynamic and regeneration studies. Sep. Purif. Technol. 116(1), 214221 (2013).10.1016/j.seppur.2013.05.041CrossRefGoogle Scholar
Bezerra, D.P., Oliveira, R.S., Vieira, R.S., Cavalcante, C.L. Jr., and Azevedo, D.C.S.: Adsorption of CO2 on nitrogen-enriched activated carbon and zeolite 13X. Adsorption 17(1), 235246 (2011).CrossRefGoogle Scholar
Zhang, Z., Zhou, J., Xing, W., Xue, Q., Yan, Z., Zhuo, S., and Qiao, S.Z.: Critical role of small micropores in high CO2 uptake. Phys. Chem. Chem. Phys. 15(7), 25232529 (2013).CrossRefGoogle ScholarPubMed
Plaza, M.G., Gonzalez, A.S., Pevida, C., Pis, J.J., and Rubiera, F.: Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications. Appl. Energy 99(1), 272279 (2012).CrossRefGoogle Scholar
Hu, B., Yu, S.H., Wang, K., Liu, L., and Xu, X.: Functional carbonaceous materials from hydrothermal carbonization of biomass: An effective chemical process. Dalton Trans. 40, 54145423 (2008).10.1039/b804644cCrossRefGoogle Scholar
Xing, W., Liu, C., Zhou, Z., Zhang, L., Zhou, J., Zhuo, S., Yan, Z., Gao, H., Wang, G., and Qiao, S.Z.: Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction. Energy Environ. Sci. 5(6), 73237327 (2012).CrossRefGoogle Scholar
Xiaoyu, M., Minhua, C., and Changwen, H.: Bifunctional HNO3 catalytic synthesis of N-doped porous carbons for CO2 capture. J. Mater. Chem. A 1(3), 913918 (2013).Google Scholar
Titirici, M.M., Thomas, A., and Antonietti, M.: Back in the black: Hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New J. Chem. 31(6), 787789 (2007).CrossRefGoogle Scholar
Bender, M.L. and Komiyama, M.: Cyclodextrin Chemistry (Springer-Verlag, New York, 1978).CrossRefGoogle Scholar
Shin, Y., Li-Qiong, W., In-Tae, B., Bruce, W.A., and Gregory, J.E.: Hydrothermal syntheses of colloidal carbon spheres from cyclodextrins. J. Phys. Chem. C 112(37), 1423614240 (2008).CrossRefGoogle Scholar
Zhao, Y.C., Zhao, L., Li-Juan, M., and Han, B.H.: One-step solvothermal carbonization to microporous carbon materials derived from cyclodextrins. J. Mater. Chem. A 1(33), 94569461 (2013).CrossRefGoogle Scholar
Choi, S., Drese, J.H., and Jones, C.W.: Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2(9), 796854 (2009).10.1002/cssc.200900036CrossRefGoogle ScholarPubMed
Chue, K.T., Kim, J.N., Yoo, Y.J., and Cho, S.H.: Comparison of activated carbon and zeolite 13X for CO2 recovery from flue gas by pressure swing adsorption. Ind. Eng. Chem. Res. 34(2), 591598 (1995).CrossRefGoogle Scholar
Lu, W., Sculley, J.P., Yuan, D., Krishna, R., and Zhou, H.: Carbon dioxide capture from air using amine-grafted porous polymer networks. J. Phys. Chem. C 117(8), 40574061 (2013).CrossRefGoogle Scholar
McDonald, T.M., Lee, W.R., Mason, J.A., Wiers, B.M., Hong, C.S., and Long, J.R.: Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal–organic framework mmen-Mg2(dobpdc). J. Am. Chem. Soc. 134(16), 70567065 (2012).CrossRefGoogle Scholar
Gebald, C., Wurzbacher, J.A., Tingaut, P., Zimmermann, T., and Steinfeld, A.: Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environ. Sci. Technol. 45(20), 91019108 (2011).CrossRefGoogle Scholar
Mason, J.A., Sumida, K., Herm, Z.R., Krishna, R., and Long, J.R.: Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy Environ. Sci. 4(8), 30303040 (2011).CrossRefGoogle Scholar
Supplementary material: File

Sivadas supplementary material

Figures S1-S4

Download Sivadas supplementary material(File)
File 2.4 MB