Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-18T04:41:09.842Z Has data issue: false hasContentIssue false

Fabrication of vertical graphene-based nanocomposite thin films

Published online by Cambridge University Press:  20 February 2015

Keivan Davami*
Affiliation:
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
Mehrdad Shaygan
Affiliation:
Advanced Microelectronic Center Aachen (AMICA), AMO GmbH, 52074 Aachen, Germany
Igor Bargatin
Affiliation:
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
*
a)Address all correspondence to this author. e-mail: kdavami@seas.upenn.edu
Get access

Abstract

While planar graphene has revolutionized science and engineering in many different areas, one of its close relatives, vertical graphene (VG), also known as carbon nanowalls, has not been investigated as extensively. Compared to planar graphene that is grown parallel to the substrate, VG can grow almost vertically on a wide variety of substrates. In this study, we report the fabrication and characterization of VG-based nanocomposite thin films, where the graphene sheets are uniformly distributed in the host polymer. A novel fabrication method was developed and the properties of the fabricated nanocomposites were characterized. The results showed that in our method graphene sheets are much more uniformly dispersed and common issues in graphene nanocomposites, such as agglomeration and breaking of the sheets during dispersion, are avoided. The increase in the Young's modulus and tensile strength of the fabricated nanocomposites is much higher than that of the samples fabricated using the traditional methods of randomly dispersing graphene using a sonicator or high-speed stirrer.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kumar, A., Voevodin, A.A., Zemlyanov, D., Zakharov, D.N., and Fisher, T.S.: Rapid synthesis of few-layer graphene over Cu foil. Carbon 50, 1546 (2012).Google Scholar
Soin, N., Roy, S.S., Lim, T.H., and McLaughlin, J.A.: Microstructural and electrochemical properties of vertically aligned few layered graphene (flg) nanoflakes and their application in methanol oxidation. Mater. Chem. Phys. 129, 1051 (2011).CrossRefGoogle Scholar
Malesevic, A., Vitchev, R., Schouteden, K., Volodin, A., Zhang, L., Van Tendeloo, G., Vanhulsel, A., and Van Haesendonck, C.: Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology 19, 305604 (2008).Google Scholar
Fang, J., Levchenko, I., van der Laan, T., Kumar, S., and Ostrikov, K.: Multipurpose nanoporous alumina–carbon nanowall bi-dimensional nano-hybrid platform via catalyzed and catalyst-free plasma cvd. Carbon 78, 627 (2014).CrossRefGoogle Scholar
Quinlan, R.A., Cai, M., Outlaw, R.A., Butler, S.M., Miller, J.R., and Mansour, A.N.: Investigation of defects generated in vertically oriented graphene. Carbon 64, 92 (2013).Google Scholar
Koh, A.T.T., Foong, Y.M., Pan, L., Sun, Z., and Chua, D.H.C.: Effective large-area free-standing graphene field emitters by electrophoretic deposition. Appl. Phys. Lett. 101, 183107 (2012).Google Scholar
Behura, S.K., Mukhopadhyay, I., Hirose, A., Yang, Q., and Jani, O.: Vertically oriented few-layer graphene as an electron field-emitter. Phys. Status Solidi A 210, 1817 (2013).Google Scholar
Hassan, S., Suzuki, M., Mori, S., and El-Moneim, A.A.: MnO2/carbon nanowall electrode for future energy storage application: Effect of carbon nanowall growth period and MnO2 mass loading. RSC Adv. 4, 20479 (2014).Google Scholar
Krivchenko, V.A., Itkis, D.M., Evlashin, S.A., Semenenko, D.A., Goodilin, E.A., Rakhimov, A.T., Stepanov, A.S., Suetin, N.V., Pilevsky, A.A., and Voronin, P.V.: Carbon nanowalls decorated with silicon for lithium-ion batteries. Carbon 50, 1438 (2012).Google Scholar
Shin, S.C., Yoshimura, A., Matsuo, T., Mori, M., Tanimura, M., Ishihara, A., Ota, K-i., and Tachibana, M.: Carbon nanowalls as platinum support for fuel cells. J. Appl. Phys. 110, 104308 (2011).Google Scholar
Miller, J.R., Outlaw, R.A., and Holloway, B.C.: Graphene double-layer capacitor with ac line-filtering performance. Science 329, 1637 (2010).Google Scholar
Krivchenko, V.A., Evlashin, S.A., Mironovich, K.V., Verbitskiy, N.I., Nefedov, A., Wöll, C., Kozmenkova, A.Y., Suetin, N.V., Svyakhovskiy, S.E., Vyalikh, D.V., Rakhimov, A.T., Egorov, A.V., and Yashina, L.V.: Carbon nanowalls: The next step for physical manifestation of the black body coating. Sci. Rep. 3, 3328 (2013).Google Scholar
Seo, D.H., Rider, A.E., Kumar, S., Randeniya, L.K., and Ostrikov, K.: Vertical graphene gas- and bio-sensors via catalyst-free, reactive plasma reforming of natural honey. Carbon 60, 221 (2013).Google Scholar
Lee, C., Wei, X., Kysar, J.W., and Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008).Google Scholar
Cranford, S. and Buehler, M.: Packing efficiency and accessible surface area of crumpled graphene. Phys. Rev. B 84, 205451 (2011).CrossRefGoogle Scholar
Moniruzzaman, M. and Winey, K.I.: Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194 (2006).Google Scholar
Sahoo, N.G., Rana, S., Cho, J.W., Li, L., and Chan, S.H.: Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 35, 837 (2010).Google Scholar
Hirsch, A.: Functionalization of single-walled carbon nanotubes. Angew. Chem., Int. Ed. 41, 1853 (2002).Google Scholar
Yuan, W.Z., Sun, J.Z., Dong, Y., Häussler, M., Yang, F., Xu, H.P., Qin, A., Lam, J.W.Y., Zheng, Q., and Tang, B.Z.: Wrapping carbon nanotubes in pyrene-containing poly(phenylacetylene) chains: Solubility, stability, light emission, and surface photovoltaic properties. Macromolecules 39, 8011 (2006).CrossRefGoogle Scholar
Chen, J., Hamon, M.A., Hu, H., Chen, Y., Rao, A.M., Eklund, P.C., and Haddon, R.C.: Solution properties of single-walled carbon nanotubes. Science 282, 5386 (1998).Google Scholar
Zhang, Q., Lippits, D.R., and Rastogi, S.: Dispersion and rheological aspects of SWNTs in ultrahigh molecular weight polyethylene. Macromolecules 39, 658 (2005).Google Scholar
Rafiee, M.A., Rafiee, J., Srivastava, I., Wang, Z., Song, H., Yu, Z-Z., and Koratkar, N.: Fracture and fatigue in graphene nanocomposites. Small 6, 179 (2010).Google Scholar
Zhang, Y., Zhu, Y., Lin, G., Ruoff, R.S., Hu, N., Schaefer, D.W., and Mark, J.E.: What factors control the mechanical properties of poly(dimethylsiloxane) reinforced with nanosheets of 3-aminopropyltriethoxysilane modified graphene oxide? Polymer 54, 3605 (2013).CrossRefGoogle Scholar
Davami, K., Shaygan, M., Kheirabi, N., Zhao, J., Kovalenko, D.A., Rummeli, M.H., Opitz, J., Cuniberti, G., Lee, J-S., and Meyyappan, M.: Synthesis and characterization of carbon nanowalls on different substrates by radio frequency plasma enhanced chemical vapor deposition. Carbon 72, 372 (2014).CrossRefGoogle Scholar
Zhao, J., Shaygan, M., Eckert, J., Meyyappan, M., and Rümmeli, M.H.: A growth mechanism for free-standing vertical graphene. Nano Lett. 14, 3064 (2014).Google Scholar
Zheng, Y., Wei, N., Fan, Z., Lanqing, X.U., and Huang, Z.: Mechanical properties of grafold: A demonstration of strengthened graphene. Nanotechnology 22, 405701 (2011).Google Scholar
Kim, S.Y., Choi, W.S., Lee, J-H., and Hong, B.: Substrate temperature effect on the growth of carbon nanowalls synthesized via microwave PECVD. Mater. Res. Bull. 58, 112 (2014).CrossRefGoogle Scholar
Barreiro, A., Börrnert, F., Rümmeli, M.H., Büchner, B., and Vandersypen, L.M.K.: Graphene at high bias: Cracking, layer by layer sublimation, and fusing. Nano Lett. 12, 1873 (2012).Google Scholar
Ferrari, A. and Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095 (2000).CrossRefGoogle Scholar
Tuinstra, F. and Koenig, J.L.: Raman spectrum of graphite. J. Chem. Phys. 53, 1126 (1970).Google Scholar
Wu, Y., Yang, B., Zong, B., Sun, H., Shen, Z., and Feng, Y.: Carbon nanowalls and related materials. J. Mater. Chem. 14, 469 (2004).Google Scholar
Ferrari, A., Meyer, J., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K., Roth, S., and Geim, A.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).Google Scholar
Kastner, J., Pichler, T., Kuzmany, H., Curran, S., Blau, W., Weldon, D.N., Delamesiere, M., Draper, S., and Zandbergen, H.: Resonance Raman and infrared spectroscopy of carbon nanotubes. Chem. Phys. Lett. 221, 53 (1994).Google Scholar
Kurita, S., Yoshimura, A., Kawamoto, H., Uchida, T., Kojima, K., Tachibana, M., Molina-Morales, P., and Nakai, H.: Raman spectra of carbon nanowalls grown by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 97, 104320 (2005).Google Scholar
Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., and Kong, J.: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30 (2009).Google Scholar
Park, S., Lee, K-S., Bozoklu, G., Cai, W., Nguyen, S.T., and Ruoff, R.S.: Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano 2, 572 (2008).Google Scholar
Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., and Ruoff, R.S.: Graphene-based composite materials. Nature 442, 282 (2006).Google Scholar
Ramanathan, T., Abdala, A.A., Stankovich, S., Dikin, D.A., Alonso, M.H., Piner, R.D., Adamson, H.D., Schniepp, H.C., Chen, X., Ruoff, S.R., Nguyen, S.T., Aksay, I.A., Homme, R.K.P., and Brinson, L.C.: Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 3, 327 (2008).Google Scholar