Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-27T09:08:50.769Z Has data issue: false hasContentIssue false

Spectroscopic studies of nucleic acid additions during seed-mediated growth of gold nanoparticles

Published online by Cambridge University Press:  06 February 2015

Maeling J.N. Tapp
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, USA
Richard S. Sullivan
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, USA
Patrick Dennis
Affiliation:
Materials & Manufacturing Directorate, Soft Matter Materials Branch, Air Force Research Laboratory, Wright Patterson AFB, Ohio 45433, USA
Rajesh R. Naik
Affiliation:
Materials & Manufacturing Directorate, Soft Matter Materials Branch, Air Force Research Laboratory, Wright Patterson AFB, Ohio 45433, USA
Valeria T. Milam*
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, USA; and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, USA
*
a)Address all correspondence to this author. e-mail: valeria.milam@mse.gatech.edu
Get access

Abstract

The effect of adding nucleic acids to gold seeds during the growth stage of either nanospheres or nanorods was investigated using UV–Vis spectroscopy to reveal any oligonucleotide base or structure-specific effects on nanoparticle growth kinetics or plasmonic signatures. Spectral data indicate that the presence of DNA duplexes during seed aging drastically accelerated nanosphere growth while the addition of single-stranded polyadenine at any point during seed aging induces nanosphere aggregation. For seeds added to a gold nanorod growth solution, single-stranded polythymine induces a modest blue shift in the longitudinal peak wave length. Moreover, a particular sequence comprised of 50% thymine bases was found to induce a faster, more dramatic blue shift in the longitudinal peak wave length compared to any of the homopolymer incubation cases. Monomeric forms of the nucleic acids, however, do not yield discernable spectral differences in any of the gold suspensions studied.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Murphy, C.J., Thompson, L.B., Alkilany, A.M., Sisco, P.N., Boulos, S.P., Sivapalan, S.T., Yang, J.A., Chernak, D.J., and Huang, J.: The many faces of gold nanorods. J. Phys. Chem. Lett. 1, 2867 (2010).Google Scholar
Lohse, S.E. and Murphy, C.J.: The quest for shape control: A history of gold nanorod synthesis. Chem. Mater. 25, 1250 (2013).Google Scholar
Jain, P.K., Lee, K.S., El-Sayed, I.H., and El-Sayed, M.A.: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238 (2006).Google Scholar
Xia, F., Zuo, X., Yang, R., Xiao, Y., Kang, D., Vallée-Bélisle, A., Gong, X., Yuen, J.D., Hsu, B.B.Y., and Heeger, A.J.: Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc. Natl. Acad. Sci. U. S. A. 107, 10837 (2010).Google Scholar
Taton, T.A., Mirkin, C.A., and Letsinger, R.L.: Scanometric DNA array detection with nanoparticle probes. Science 289, 1757 (2000).CrossRefGoogle ScholarPubMed
Jain, P.K., Huang, X., El-Sayed, I.H., and El-Sayed, M.A.: Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41, 1578 (2008).CrossRefGoogle ScholarPubMed
Storhoff, J.J., Elghanian, R., Mucic, R.C., Mirkin, C.A., and Letsinger, R.L.: One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 120, 1959 (1998).Google Scholar
Mirkin, C., Letsinger, R., and Mucic, R.: A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607 (1996).Google Scholar
Gupta, M.K., Konig, T., Near, R., Nepal, D., Drummy, L.F., Biswas, S., Naik, S., Vaia, R.A., El-Sayed, M.A., and Tsukruk, V.V.: Surface assembly and plasmonic properties in strongly coupled segmented gold nanorods. Small 9, 2979 (2013).Google Scholar
Sandström, P., Boncheva, M., and Åkerman, B.: Nonspecific and thiol-specific binding of DNA to gold nanoparticles. Langmuir 19, 7537 (2003).Google Scholar
Balasubramanian, S.K., Yang, L., Yung, L-Y.L., Ong, C-N., Ong, W-Y., and Yu, L.E.: Characterization, purification, and stability of gold nanoparticles. Biomaterials 31, 9023 (2010).Google Scholar
Giljohann, D.A., Seferos, D.S., Daniel, W.L., Massich, M.D., Patel, P.C., and Mirkin, C.A.: Gold nanoparticles for biology and medicine. Angew. Chem., Int. Ed. Engl. 49, 3280 (2010).CrossRefGoogle ScholarPubMed
Huang, X., El-Sayed, I.H., Qian, W., and El-Sayed, M.A.: Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115 (2006).CrossRefGoogle ScholarPubMed
Bedford, E.E., Spadavecchia, J., Pradier, C-M., and Gu, F.X.: Surface plasmon resonance biosensors incorporating gold nanoparticles. Macromol. Biosci. 12, 724 (2012).Google Scholar
Huang, X., Neretina, S., and El-Sayed, M.A.: Gold nanorods: From synthesis and properties to biological and biomedical applications. Adv. Mater. 21, 4880 (2009).Google Scholar
Nikoobakht, B. and El-Sayed, M.A.: Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15, 1957 (2003).Google Scholar
Hubert, F., Testard, F., Rizza, G., and Spalla, O.: Nanorods versus nanospheres: A bifurcation mechanism revealed by principal component TEM analysis. Langmuir 26, 6887 (2010).Google Scholar
Liu, X., Atwater, M., Wang, J., and Huo, Q.: Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf., B 58, 3 (2007).Google Scholar
Long, N.N., Vu, L.V., Kiem, C.D., Doanh, S.C., Nguyet, C.T., Hang, P.T., Thien, N.D., and Quynh, L.M.: Synthesis and optical properties of colloidal gold nanoparticles. J. Phys.: Conf. Ser. 187, 012026 (2009).Google Scholar
Gole, A. and Murphy, C.J.: Seed-mediated synthesis of gold nanorods: Role of the size and nature of the seed. Chem. Mater. 16, 3633 (2004).CrossRefGoogle Scholar
Jiang, X.C. and Pileni, M.P.: Gold nanorods: Influence of various parameters as seeds, solvent, surfactant on shape control. Colloids Surf., A 295, 228 (2007).CrossRefGoogle Scholar
Placido, T., Comparelli, R., Giannici, F., Cozzoli, P.D., Capitani, G., Striccoli, M., Agostiano, A., and Curri, M.L.: Photochemical synthesis of water-soluble gold nanorods: The role of silver in assisting anisotropic growth. Chem. Mater. 21, 4192 (2009).CrossRefGoogle Scholar
Orendorff, C.J. and Murphy, C.J.: Quantitation of metal content in the silver-assisted growth of gold nanorods. J. Phys. Chem. B 110, 3990 (2006).CrossRefGoogle ScholarPubMed
Murphy, C.J., Thompson, L.B., Chernak, D.J., Yang, J.A., Sivapalan, S.T., Boulos, S.P., Huang, J., Alkilany, A.M., and Sisco, P.N.: Gold nanorod crystal growth: From seed-mediated synthesis to nanoscale sculpting. Curr. Opin. Colloid Interface Sci. 16, 128 (2011).Google Scholar
Bullen, C., Zijlstra, P., Bakker, E., Gu, M., and Raston, C.: Chemical kinetics of gold nanorod growth in aqueous CTAB solutions. Cryst. Growth Des. 11, 3375 (2011).Google Scholar
Ofir, Y., Samanta, B., and Rotello, V.M.: Polymer and biopolymer mediated self-assembly of gold nanoparticles. Chem. Soc. Rev. 37, 1814 (2008).Google Scholar
Ghosh, S.K. and Pal, T.: Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem. Rev. 107, 4797 (2007).Google Scholar
Rosi, N.L. and Mirkin, C.A.: Nanostructures in biodiagnostics. Chem. Rev. 105, 1547 (2005).Google Scholar
Geerts, N. and Eiser, E.: DNA-functionalized colloids: Physical properties and applications. Soft Matter 6, 4647 (2010).Google Scholar
Shin, J., Zhang, X., and Liu, J.: DNA-functionalized gold nanoparticles in macromolecularly crowded polymer solutions. J. Phys. Chem. B 116, 13396 (2012).Google Scholar
Smith, B.D., Dave, N., Huang, P-J.J., and Liu, J.: Assembly of DNA-functionalized gold nanoparticles with gaps and overhangs in linker DNA. J. Phys. Chem. C 115, 7851 (2011).Google Scholar
Feldheim, D.L. and Eaton, B.E.: Selection of biomolecules capable of mediating the formation of nanocrystals. ACS Nano 1, 154 (2007).CrossRefGoogle ScholarPubMed
Kim, J., Rheem, Y., Yoo, B., Chong, Y., Bozhilov, K.N., Kim, D., Sadowsky, M.J., Hur, H-G., and Myung, N.V.: Peptide-mediated shape- and size-tunable synthesis of gold nanostructures. Acta Biomater. 6, 2681 (2010).Google Scholar
Brown, S., Sarikaya, M., and Johnson, E.: A genetic analysis of crystal growth. J. Mol. Biol. 299, 725 (2000).Google Scholar
Kumar, S.A., Peter, Y-A., and Nadeau, J.L.: Facile biosynthesis, separation and conjugation of gold nanoparticles to doxorubicin. Nanotechnology 19, 495101 (2008).Google Scholar
Gardea-Torresdey, J.L., Parsons, J.G., Gomez, E., Peralta-Videa, J., Troiani, H.E., Santiago, P., and Yacaman, M.J.: Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett. 2, 397 (2002).CrossRefGoogle Scholar
Radloff, C. and Vaia, R.A.: Metal nanoshell assembly on a virus bioscaffold. Nano Lett. 5, 1187 (2005).Google Scholar
Berti, L. and Burley, G.A.: Nucleic acid and nucleotide-mediated synthesis of inorganic nanoparticles. Nat. Nanotechnol. 3, 81 (2008).Google Scholar
Bigham, S.R. and Coffer, J.L.: The influence of adenine content on the properties of Q-CdS clusters stabilized by polynucleotides. Colloids Surf., A 95, 211 (1995).CrossRefGoogle Scholar
Zinchenko, A.A., Yoshikawa, K., and Baigl, D.: DNA-templated silver nanorings. Adv. Mater. 17, 2820 (2005).Google Scholar
Lin, Y., Yin, M., Pu, F., Ren, J., and Qu, X.: DNA-templated silver nanoparticles as a platform for highly sensitive and selective fluorescence turn-on detection of dopamine. Small 7, 1557 (2011).Google Scholar
Wang, Z., Tang, L., Tan, L.H., Li, J., and Lu, Y.: Discovery of the DNA “genetic code” for abiological gold nanoparticle morphologies. Angew. Chem., Int. Ed. Engl. 51, 9078 (2012).Google Scholar
Wang, Z., Zhang, J., Ekman, J.M., Kenis, P.J.A., and Lu, Y.. DNA-mediated control of metal nanoparticle shape: One-pot synthesis and cellular uptake of highly stable and functional gold nanoflowers. Nano Lett. 10, 1886 (2010).Google Scholar
Wolf, L.K., Gao, Y., and Georgiadis, R.M.: Sequence-dependent DNA immobilization: Specific versus nonspecific contributions. Langmuir 20, 3357 (2004).Google Scholar
Liu, J.: Adsorption of DNA onto gold nanoparticles and graphene oxide: Surface science and applications. Phys. Chem. Chem. Phys. 14, 10485 (2012).CrossRefGoogle Scholar
Kimura-Suda, H., Petrovykh, D.Y., Tarlov, M.J., and Whitman, L.J.: Base-dependent competitive adsorption of single-stranded DNA on gold. J. Am. Chem. Soc. 125, 9014 (2003).CrossRefGoogle ScholarPubMed
Storhoff, J.J., Elghanian, R., Mirkin, C.A., and Letsinger, R.L.: Sequence-dependent stability of DNA-modified gold nanoparticles. Langmuir 18, 6666 (2002).Google Scholar
Li, H., Nelson, E., Pentland, A., Buskirk, J., and Rothberg, L.: Assays based on differential adsorption of single-stranded and double-stranded DNA on unfunctionalized gold nanoparticles in a colloidal suspension. Plasmonics 2, 165 (2007).CrossRefGoogle Scholar
Nikoobakht, B. and El-Sayed, M.A.: Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods. Langmuir 17, 6368 (2001).Google Scholar
Nykypanchuk, D., Maye, M.M., van der Lelie, D., and Gang, O.: DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549 (2008).Google Scholar
Lee, K.S. and El-Sayed, M.A.: Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B 110, 19220 (2006).Google Scholar
Zweifel, D.A. and Wei, A.: Sulfide-arrested growth of gold nanorods. Chem. Mater. 17, 4256 (2005).Google Scholar
Eustis, S. and El-Sayed, M.A.: Determination of the aspect ratio statistical distribution of gold nanorods in solution from a theoretical fit of the observed inhomogeneously broadened longitudinal plasmon resonance absorption spectrum. J. Appl. Phys. 100, 044324 (2006).Google Scholar
Link, S. and El-Sayed, M.A.: Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 103, 4212 (1999).Google Scholar
Supplementary material: PDF

Tapp et. al. supplementary material

Supplementary figures

Download Tapp et. al. supplementary material(PDF)
PDF 577.4 KB