Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-15T08:26:01.653Z Has data issue: false hasContentIssue false

Expanded phase stability of Gd-based garnet transparent ceramic scintillators

Published online by Cambridge University Press:  16 September 2014

Zachary M. Seeley*
Affiliation:
Lawrence Livermore National Laboratory, Livermore California 94550, USA
Nerine J. Cherepy
Affiliation:
Lawrence Livermore National Laboratory, Livermore California 94550, USA
Stephen A. Payne
Affiliation:
Lawrence Livermore National Laboratory, Livermore California 94550, USA
*
a)Address all correspondence to this author. e-mail: seeley7@llnl.gov
Get access

Abstract

Gadolinium-based transparent polycrystalline ceramic garnet scintillators are being developed for gamma spectroscopy detectors. The scintillator light yield and energy resolution depend on many of the ceramic characteristics, including composition, homogeneity, and presence of secondary phases. To investigate phase stability dependence on composition, three base compositions – Gd3Ga2.2Al2.8O12, Gd1.5Y1.5Ga2.2Al2.8O12, and Gd1.5Y1.5Ga2.5Al2.5O12 were studied, and for each composition the rare earth content was varied according to the formula (Gd,Y,Ce)3(YXGa1−X)2(Ga,Al)3O12; where −0.01 < X < 0.05. We have found that yttrium and gallium help to stabilize the garnet crystal structure in the ceramics by allowing interionic substitution among the cationic garnet sites. Specifically, a composition of Gd1.49Y1.49Ce0.02Ga2.5Al2.5O12 can accommodate approximately 2 at.% excess rare earth ions from the perfect garnet stoichiometry and remain a phase pure transparent ceramic with optimal performance as a radiation detector. This expanded phase stability region helps to enable the fabrication of large transparent ceramics from powder with tolerance for flexibility in chemical stoichiometric precision.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Manabe, T. and Kazumichi, E.: Crystal growth and optical properties of gadolinium aluminum garnet. Mater. Res. Bull. 6, 11671174 (1971).Google Scholar
Kanai, T., Satoh, M., and Miura, I.: Characteristic of a nonstoichiometric Gd3+δ(Al,Ga)5-δO12:Ce garnet scintillator. J. Am. Ceram. Soc. 91, 456462 (2008).CrossRefGoogle Scholar
Cherepy, N.J., Kuntz, J.D., Seeley, Z.M., Fisher, S.E., Drury, O.B., Sturm, B.W., Hurst, T.A., Sanner, R.D., Roberts, J.J., and Payne, S.A.: Transparent ceramic scintillators for γ spectroscopy and radiography. Proc. SPIE 7805, 780501 (2010).Google Scholar
Kamada, K., Yanagida, T., Pejchal, J., Nikl, M., Endo, T., Tsutumi, K., Fujimoto, Y., Fukabori, A., and Yoshikawa, A.: Scintillator-oriented combinatorial search in Ce-doped (Y,Gd)3(Ga,Al)5O12 multicomponent garnet compounds. J. Phys. D: Appl. Phys. 44, 505104 (2011).Google Scholar
Dorenbos, P.: Electronic structure and optical properties of the lanthanide activated RE3(Al1-xGax)5O12 (RE=Gd, Y,Lu) garnet compounds. J. Lumin. 134, 310318 (2013).Google Scholar
Ogiegło, J.M., Katelnikovas, A., Zych, A., Jüstel, T., Meijerink, A., and Ronda, C.R.: Luminescence and luminescence quenching in Gd3(Ga,Al)5O12 scintillators doped with Ce3+. J. Phys. Chem. A 117, 24792484 (2013).Google Scholar
Seeley, Z.M., Cherepy, N.J., and Payne, S.A.: Homogeneity of Gd-based garnet transparent ceramic scintillators for gamma spectroscopy. J. Cryst. Growth 379, 7983 (2013).Google Scholar
Cherepy, N.J., Seeley, Z.M., Payne, S.A., Beck, P.R., Drury, O.B., O’Neal, S.P., Morales Figueroa, K., Hunter, S., Ahle, L., Thelin, P.A., Stefanik, T., and Kindem, J.: Development of transparent ceramic Ce-doped gadolinium garnet gamma spectrometers. IEEE Trans. Nucl. Sci. 60(3), 2330 (2013).Google Scholar
Cherepy, N.J., Payne, S.A., Sturm, B.W., O’Neal, S.P., Seeley, Z.M., Drury, O.B., Haselhorst, L.K., Rupert, B.L., Sanner, R.D., Thelin, P.A., Fisher, S.E., Hawrami, R., Shah, K.S., Burger, A., Ramey, J.O., and Boatner, L.A.: Performance of europium-doped strontium iodide, transparent ceramics and bismuth-loaded polymer scintillators. Proc. SPIE 8142, 81420W (2011).Google Scholar
Kindem, J., Conwell, R., Seeley, Z.M., Cherepy, N.J., and Payne, S.A.: Performance comparison of small GYGAG(Ce) and CsI(TI) scintillators with PIN detectors. IEEE Nucl. Sci. Sympo., Conf. Rec. 16211623 (2011).Google Scholar
Nicolas, J., Coutures, J., and Coutures, J.P.: Sm2O3-Ga2O3 and Gd2O3-Ga2O3 phase diagrams. J. Solid State Chem. 52, 101113 (1984).Google Scholar
Brandle, C.D. and Barns, R.L.: Crystal stoichiometry of Czochralski grown rare-earth gallium garnets. J. Cryst. Growth 26, 169170 (1974).Google Scholar
Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A32, 751767 (1976).Google Scholar
Dorenbos, P.: Electronic structure engineering of lanthanide activated materials. J. Mater. Chem. 22, 22344 (2012).CrossRefGoogle Scholar
Ueda, J., Tanabe, S., and Nakanishi, T.: Analysis of Ce3+ luminescence quenching in solid solutions between Y3Al5O12 and Y3Ga5O12 by temperature dependence of photoconductivity measurement. J. Appl. Phys. 110, 053102 (2011).Google Scholar