Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T10:01:57.877Z Has data issue: false hasContentIssue false

Tape-casted transparent alumina ceramic wafers

Published online by Cambridge University Press:  03 September 2014

Yan Yang
Affiliation:
Department of Materials Science and Engineering, Kazuo Inamori School of Engineering, New York State College of Ceramics, Alfred University, Alfred, New York 14802, USA
Yiquan Wu*
Affiliation:
Department of Materials Science and Engineering, Kazuo Inamori School of Engineering, New York State College of Ceramics, Alfred University, Alfred, New York 14802, USA
*
a)Address all correspondence to this author. e-mail: wuy@alfred.edu
Get access

Abstract

Ceramic wafers of alumina (Al2O3) were produced by tape casting of aqueous slurry followed by vacuum sintering. The binder system used to form the tape casting slurry is a copolymer of isobutylene and maleic anhydride, which is environmentally friendly, marketed under the name ISOBAM. The rheological properties of the slurries were studied by varying solid loading and binder addition level. Through the optimization of plasticizer addition, green tapes were casted with excellent plasticity and a thickness of 240–740 μm. The tapes displayed a post-sintering thickness of 150–660 μm. The morphologies, as well as the fracture surface and the as-sintered surface of the powder were examined using a scanning electron microscope (SEM). The in-line transmittance of the transparent unpolished Al2O3 wafers with a thickness of 660 μm was found to be 72% at a wave length of 5 μm and 26% at a wave length of 600 nm.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Howatt, G., Breckenridge, R., and Brownlow, J.: Fabrication of thin ceramic sheets for capacitors. J. Am. Ceram. Soc. 30(8), 237 (1947).CrossRefGoogle Scholar
Chartier, T. and Bruneau, A.: Aqueous tape casting of alumina substrates. J. Eur. Ceram. Soc. 12(4), 243 (1993).CrossRefGoogle Scholar
Tok, A.I., Boey, F.Y., and Khor, K.: Tape casting of high dielectric ceramic composite substrates for microelectronics application. J. Mater. Process. Technol. 89, 508 (1999).CrossRefGoogle Scholar
Mistler, R.E.: Tape casting: The basic process for meeting the needs of the electronics industry. Am. Ceram. Soc. Bull. 69, 1022 (1990).Google Scholar
Jantunen, H., Hu, T., Uusimäki, A., and Leppävuori, S.: Tape casting of ferroelectric, dielectric, piezoelectric and ferromagnetic materials. J. Eur. Ceram. Soc. 24(6), 1077 (2004).CrossRefGoogle Scholar
Sakabe, Y.: Multilayer ceramic capacitors. Curr. Opin. Solid State Mater. Sci. 2(5), 584 (1997).CrossRefGoogle Scholar
Wang, Z., Qian, J., Cao, J., Wang, S., and Wen, T.: A study of multilayer tape casting method for anode-supported planar type solid oxide fuel cells (SOFCs). J. Alloys Compd. 437(1), 264 (2007).CrossRefGoogle Scholar
Blodgett, A. and Barbour, D.R.: Thermal conduction module: A high-performance multilayer ceramic package. IBM J. Res. Dev. 26(1), 30 (1982).CrossRefGoogle Scholar
Cui, X., Ouyang, S., Yu, Z., Wang, C., and Huang, Y.: A study on green tapes for LOM with water-based tape casting processing. Mater. Lett. 57(7), 1300 (2003).CrossRefGoogle Scholar
Antolini, E., Ferretti, M., and Gemme, S.: Preparation of porous nickel electrodes for molten carbonate fuel cells by non-aqueous tape casting. J. Mater. Sci. 31(8), 2187 (1996).CrossRefGoogle Scholar
Gutiérrez, C.A. and Moreno, R.: Tape casting of non-aqueous silicon nitride slips. J. Eur. Ceram. Soc. 20(10), 1527 (2000).CrossRefGoogle Scholar
Mikeska, K.R. and Cannon, W.R.: Non-aqueous dispersion properties of pure barium titanate for tape casting. Colloids Surf. 29(3), 305 (1988).CrossRefGoogle Scholar
Kristoffersson, A. and Carlström, E.: Tape casting of alumina in water with an acrylic latex binder. J. Eur. Ceram. Soc. 17(2), 289 (1997).CrossRefGoogle Scholar
Doreau, F., Tarı̀, G., Pagnoux, C., Chartier, T., and Ferreira, J.: Processing of aqueous tape-casting of alumina with acrylic emulsion binders. J. Eur. Ceram. Soc. 18(4), 311 (1998).CrossRefGoogle Scholar
Gurak, N.R., Josty, P., and Thompson, R.: Properties and uses of synthetic emulsion polymers as binders in advanced ceramics processing. Am. Ceram. Soc. Bull. 66(10), 1495 (1987).Google Scholar
Adolfsson, E.: Gelcasting of zirconia using agarose. J. Am. Ceram. Soc. 89(6), 1897 (2006).CrossRefGoogle Scholar
Nagata, K.: Correlation of conformation of acrylic polymers in aqueous suspensions and properties of alumina green sheets. Ceram. Trans. 26, 205 (1991).Google Scholar
Albano, M.P. and Garrido, L.B.: Aqueous tape casting of yttria stabilized zirconia. Mater. Sci. Eng., A 420(1), 171 (2006).CrossRefGoogle Scholar
Pagnoux, C., Chartier, T., de F Granja, M., Doreau, F., Ferreira, J., and Baumard, J.: Aqueous suspensions for tape-casting based on acrylic binders. J. Eur. Ceram. Soc. 18(3), 241 (1998).CrossRefGoogle Scholar
Moreno, R.: The role of slip additives in tape-casting technology. I: Solvents and dispersants. Am. Ceram. Soc. Bull. 71(10), 1521 (1992).Google Scholar
Schelffele, G.W. and Sacks, M.D.: The electronics division fall meeting on multilayer ceramic devices, Blum, J.B. and Cannon, W.R. ed.; American Ceramic Society: Westervill, OH, 1986, Vol. 19, p. 175.Google Scholar
Jean, J-H., Yeh, S-F., and Chen, C-J.: Adsorption of poly (vinyl butyral) in nonaqueous ferrite suspensions. J. Mater. Res. 12(04), 1062 (1997).CrossRefGoogle Scholar
Shimai, S., Yang, Y., Wang, S., and Kamiya, H.: Spontaneous gelcasting of translucent alumina ceramics. Opt. Mater. Express 3(8), 1000 (2013).CrossRefGoogle Scholar
Yang, Y., Shimai, S., Sun, Y., Dong, M., Kamiya, H., and Wang, S.: Fabrication of porous Al2O3 ceramics by rapid gelation and mechanical foaming. J. Mater. Res. 28(15), 2012 (2013).CrossRefGoogle Scholar
Yang, Y., Shimai, S., and Wang, S.: Room-temperature gelcasting of alumina with a water-soluble copolymer. J. Mater. Res. 28(11), 1512 (2013).CrossRefGoogle Scholar
Yang, Y. and Wu, Y.: New gelling systems to fabricate complex-shaped transparent ceramics. In SPIE Defense, Security, and Sensing, Tustison, R.W. and Zelinski, B.J. ed.; International Society for Optics and Photonics: Baltimore, Maryland, 2013, Vol. 8708, pp. 87080D.Google Scholar
Shu, X., Li, J., Zhang, H.L., Dong, M.J., Shunzo, S.M., and Wang, S.W.: Gelcasting of aluminum nitride using a water-soluble copolymer. J. Inorg. Mater. 29(3), 2 (2014).Google Scholar
Sun, Y., Shimai, S., Peng, X., Dong, M., Kamiya, H., and Wang, S.: A method for gelcasting high-strength alumina ceramics with low shrinkage. J. Mater. Res. 29(02), 247 (2014).CrossRefGoogle Scholar
Sun, Y., Shimai, S., Peng, X., Zhou, G., Kamiya, H., and Wang, S.: Fabrication of transparent Y2O3 ceramics via aqueous gelcasting. Ceram. Int. (2014).CrossRefGoogle Scholar
Snijkers, F., De Wilde, A., Mullens, S., and Luyten, J.: Aqueous tape casting of yttria stabilised zirconia using natural product binder. J. Eur. Ceram. Soc. 24(6), 1107 (2004).CrossRefGoogle Scholar
Briscoe, B.J., Lo Biundo, G., and Özkan, N.: Drying kinetics of water-based ceramic suspensions for tape casting. Ceram. Int. 24(5), 347 (1998).CrossRefGoogle Scholar
Grader, G.S. and Zuri, L.: Tape casting slip preparation by in situ polymerization. J. Am. Ceram. Soc. 76(7), 1809 (1993).CrossRefGoogle Scholar
Yuping, Z., Dongliang, J., and Greil, P.: Tape casting of aqueous Al2O3 slurries. J. Eur. Ceram. Soc. 20(11), 1691 (2000).CrossRefGoogle Scholar
Hotza, D. and Greil, P.: Review: Aqueous tape casting of ceramic powders. Mater. Sci. Eng., A 202(1), 206 (1995).CrossRefGoogle Scholar
Bitterlich, B., Lutz, C., and Roosen, A.: Rheological characterization of water-based slurries for the tape casting process. Ceram. Int. 28(6), 675 (2002).CrossRefGoogle Scholar
Kristoffersson, A., Roncari, E., and Galassi, C.: Comparison of different binders for water-based tape casting of alumina. J. Eur. Ceram. Soc. 18(14), 2123 (1998).CrossRefGoogle Scholar
Mao, X., Shimai, S., Dong, M., and Wang, S.: Gelcasting and pressureless sintering of translucent alumina ceramics. J. Am. Ceram. Soc. 91(5), 1700 (2008).CrossRefGoogle Scholar
Wenig, R.W. and Schrader, G.L.: In situ FTIR (Fourier transform IR) spectroscopy of 1-butene and 1, 3-butadiene. Selective oxidation to maleic anhydride on vanadium-phosphorus-oxygen catalysts. J. Phys. Chem. 91(7), 1911 (1987).CrossRefGoogle Scholar