Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-20T10:09:49.968Z Has data issue: false hasContentIssue false

The ultimate efficiency of organolead halide perovskite solar cells limited by Auger processes

Published online by Cambridge University Press:  14 June 2016

Ibraheem Almansouri*
Affiliation:
Microsystems Engineering, Department of Electrical Engineering and Computer Science, Masdar Institute of Science and Technology, Abu Dhabi, United Arab Emirates
Martin A. Green
Affiliation:
Australian Centre for Advanced Photovoltaics (ACAP), School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney 2052, Australia
Anita Ho-Baillie
Affiliation:
Australian Centre for Advanced Photovoltaics (ACAP), School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney 2052, Australia
*
a)Address all correspondence to this author. e-mail: ialmansouri@masdar.ac.ae
Get access

Abstract

The key to improve the conversion efficiency of perovskite solar cells lies in the identification and control of different limiting factors. Both intrinsic and extrinsic losses are shown here to be detrimental on conversion efficiency well below the thermodynamic limit. The effect of varying radiative and Auger recombination processes as inevitable intrinsic losses on device performance is shown in this work. The extrinsic losses are shown to impose severe bounds on efficiency limits. Such extrinsic losses include realistic material optical properties, finite diffusion length, ideality factor, parasitic resistance, and parasite absorption. Thus, this work presents the roadmap and the possible approaches in achieving performance beyond what is currently demonstrated in the highest efficiency perovskite solar cells. Additionally, the impact of light concentration, important in Auger limited devices is investigated. Finally, the impact of Auger recombination for perovskite with finite diffusion length in a two-terminal perovskite/silicon tandem device is investigated.

Type
Invited Papers
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Green, M.A., Ho-Baillie, A., and Snaith, H.J.: The emergence of perovskite solar cells. Nat. Photonics 8(7), 506 (2014).Google Scholar
Swanson, R.M.: Approaching the 29% limit efficiency of silicon solar cells. In Conference Record of the Thirty-first IEEE photovoltaic Specialists Conference, Florida, 2005; p. 889.Google Scholar
Almansouri, I., Ho-Baillie, A., Bremner, S.P., and Green, M.A.: Supercharging silicon solar cell performance by means of multijunction concept. IEEE J. Photovoltaics 5(3), 968 (2015).Google Scholar
Green, M.A., Emery, K., Hishikawa, Y., Warta, W., and Dunlop, E.D.: Solar cell efficiency tables (version 47). Prog. Photovoltaics: Res. Appl. 24(1), 3 (2016).Google Scholar
Wei, E., Ren, X., Chen, L., and Choy, W.C.: The efficiency limit of CH3NH3PbI3 perovskite solar cells. Appl. Phys. Lett. 106(22), 221104 (2015).Google Scholar
Agarwal, S. and Nair, P.R.: Device engineering of perovskite solar cells to achieve near ideal efficiency. Appl. Phys. Lett. 107(12), 123901 (2015).Google Scholar
Almansouri, I., Ho-Baillie, A., and Green, M.A.: Ultimate efficiency limit of single-junction perovskite and dual-junction perovskite/silicon two-terminal devices. Jpn. J Appl. Phys. 54(8S1), 08KD04 (2015).CrossRefGoogle Scholar
Löper, P., Niesen, B., Moon, S-J., Martin De Nicolas, S., Holovsky, J., Remes, Z., Ledinsky, M., Haug, F-J., Yum, J-H., and De Wolf, S.: Organic–Inorganic halide perovskites: Perspectives for silicon-based tandem solar cells. IEEE J. Photovoltaics 4(6), 1545 (2014).Google Scholar
Lal, N.N., White, T.P., and Catchpole, K.R.: Optics and light trapping for tandem solar cells on silicon. IEEE J. Photovoltaics 4(6), 1380 (2014).Google Scholar
Law, C., Miseikis, L., Dimitrov, S., Shakya-Tuladhar, P., Li, X., Barnes, P.R., Durrant, J., and O'Regan, B.C.: Performance and stability of lead perovskite/TiO2, polymer/PCBM, and dye sensitized solar cells at light intensities up to 70 suns. Adv. Mater. 26(36), 6268 (2014).Google Scholar
Misra, R.K., Aharon, S., Li, B., Mogilyansky, D., Visoly-Fisher, I., Etgar, L., and Katz, E.A.: Temperature-and component-dependent degradation of perovskite photovoltaic materials under concentrated sunlight. J. Phys. Chem. Lett. 6(3), 326 (2015).Google Scholar
Shockley, W. and Queisser, H.J.: Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32(3), 510 (1961).Google Scholar
Sun, S., Salim, T., Mathews, N., Duchamp, M., Boothroyd, C., Xing, G., Sum, T.C., and Lam, Y.M.: The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 7(1), 399 (2014).Google Scholar
Tiedje, T., Yablonovitch, E., Cody, G.D., and Brooks, B.G.: Limiting efficiency of silicon solar cells. IEEE Trans. Electron Devices 31(5), 711 (1984).Google Scholar
Green, M.A.: Limiting efficiency of bulk and thin-film silicon solar cells in the presence of surface recombination. Prog. Photovoltaics: Res. Appl. 7(4), 327 (1999).Google Scholar
National Renewable Energy Laboratory: Reference solar spectral irradiance: Air Mass 1.5. http://rredc.nrel.gov/solar/spectra/am1.5/ (accessed 27 August, 2015).Google Scholar
Löper, P., Stuckelberger, M., Niesen, B., Werner, J.R.M., Filipič, M., Moon, S-J., Yum, J-H., Topič, M., De Wolf, S., and Ballif, C.: Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry. J. Phys. Chem. Lett. 6(1), 66 (2014).CrossRefGoogle ScholarPubMed
Green, M.A., Jiang, Y., Soufiani, A.M., and Ho-Baillie, A.: Optical properties of photovoltaic organic–inorganic lead halide perovskites. J. Phys. Chem. Lett. 6(23), 4774 (2015).Google Scholar
Wehrenfennig, C., Liu, M., Snaith, H.J., Johnston, M.B., and Herz, L.M.: Homogeneous emission line broadening in the organo lead halide perovskite CH3NH3PbI3−x Cl x . J. Phys. Chem. Lett. 5(8), 1300 (2014).Google Scholar
Xing, G., Mathews, N., Sun, S., Lim, S.S., Lam, Y.M., Grätzel, M., Mhaisalkar, S., and Sum, T.C.: Long-range balanced electron-and hole-transport lengths in organic–inorganic CH3NH3PbI3 . Science 342(6156), 344 (2013).Google Scholar
Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J., Leijtens, T., Herz, L.M., Petrozza, A., and Snaith, H.J.: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341 (2013).CrossRefGoogle Scholar
Dong, Q., Fang, Y., Shao, Y., Mulligan, P., Qiu, J., Cao, L., and Huang, J.: Electron-hole diffusion lengths >175 µm in solution-grown CH3NH3PbI3 single crystals. Science 347(6225), 967 (2015).Google Scholar
Shockley, W. and Read, W.T.: Statistics of the recombinations of holes and electrons. Phys. Rev. 87(5), 835 (1952).Google Scholar
Hall, R.N.: Electron-hole recombination in germanium. Phys. Rev. 87(2), 387 (1952).CrossRefGoogle Scholar
Edri, E., Kirmayer, S., Henning, A., Mukhopadhyay, S., Gartsman, K., Rosenwaks, Y., Hodes, G., and Cahen, D.: Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). Nano Lett. 14(2), 1000 (2014).Google Scholar
Taretto, K., Rau, U., and Werner, J.H.: Closed-form expression for the current/voltage characteristics of pin solar cells. Appl. Phys. A. 77(7), 865 (2003).Google Scholar
Green, M.A.: Solar Cells: Operating Principles, Technology, and System Applications (Englewood Cliffs: Prentice-Hall, 1982).Google Scholar
Sze, S.M. and Ng, K.K.: Physics of Semiconductor Devices (Hoboken: John Wiley & Sons, 2006).Google Scholar
Hegedus, S.S. and Shafarman, W.N.: Thin-film solar cells: device measurements and analysis. Prog. Photovoltaics: Res. Appl. 12(2–3), 155 (2004).Google Scholar
Wang, J.T-W., Ball, J.M., Barea, E.M., Abate, A., Alexander-Webber, J.A., Huang, J., Saliba, M., Mora-Sero, I., Bisquert, J., and Snaith, H.J.: Low-temperature processed electron collection layers of Graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 14(2), 724 (2013).CrossRefGoogle ScholarPubMed
Kalyanasundaram, K.: Dye-sensitized Solar Cells (Lausanne, Switzerland: EPFL Press, 2010).Google Scholar
Kwak, D-J., Moon, B-H., Lee, D-K., Park, C-S., and Sung, Y-M.: Comparison of transparent conductive indium tin oxide, titanium-doped indium oxide, and fluorine-doped tin oxide films for dye-sensitized solar cell application. J. Electr. Eng. Technol. 6(5), 684 (2011).Google Scholar
The National Center for Photovoltaics at National Renewable Energy Laboratory: Research cell efficiency Records. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (accessed 15 March, 2016).Google Scholar