Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-26T23:23:30.328Z Has data issue: false hasContentIssue false

Effect of indium ion implantation on crystallization kinetics and phase transformation of anodized titania nanotubes using in-situ high-temperature radiation diffraction

Published online by Cambridge University Press:  11 March 2016

Hani Albetran
Affiliation:
Department of Physics and Astronomy, Curtin University, Perth, Western Australia 6845, Australia; and Department of Basic Sciences, College of Education, University of Dammam, Dammam 31451, Saudi Arabia
It Meng Low*
Affiliation:
Department of Physics and Astronomy, Curtin University, Perth, Western Australia 6845, Australia
*
a) Address all correspondence to this author. e-mail: j.low@curtin.edu.au
Get access

Abstract

Titania nanotube arrays were synthesized electrochemically by anodization of titanium foils, and the synthesized titania nanotubes were then implanted with indium ions. The effect of In-ions implantation on crystallization and phase transformation of titania was investigated using in-situ high-temperature X-ray diffraction and synchrotron radiation diffraction from room temperature to 1000 °C. Diffraction results show that crystalline anatase first appeared at 400 °C in both the non-implanted and the In-implanted materials. The temperature at which crystalline rutile temperature appeared was 600 °C for non-implanted materials and 700 °C for In-implanted materials, and the indium implantation inhibited the anatase-to-rutile transformation. Although In3+ is expected to increase oxygen vacancy concentration and then the rate of titania transformation, the observations are consistent with implanted In-ions occupying the Ti sublattice substitutionally and then inhibiting the transformation. The relatively difficult anatase-to-rutile transformation in the In-implanted material appears to result from the relatively large In3+ radius (0.080 nm). The In3+ partly replaces the Ti4+ (0.061 nm), which provides a greater structural rigidity and prevents relaxation in the Ti bonding environment.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Li, H., Cao, L., Liu, W., Su, G., and Dong, B.: Synthesis and investigation of TiO2 nanotube arrays prepared by anodization and their photocatalytic activity. Ceram. Int. 38, 5791 (2012).CrossRefGoogle Scholar
Bavykin, D.V., Kulak, A.N., Shvalagin, V.V., Andryushna, N.S., and Stroyuk, O.L.: Photocatalytic properties of rutile nanoparticles obtained via low temperature route from titanate nanotubes. J. Photochem. Photobiol., A 218, 231 (2011).Google Scholar
Varghese, O.K., Gong, D., Paulose, M., Grimes, C.A., and Dickey, E.C.: Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J. Mater. Res. 18, 156 (2003).Google Scholar
Inagakia, M., Kondoa, N., Nonakaa, R., Itob, E., Toyodac, M., Sogabec, K., and Tsumura, T.: Structure and photoactivity of titania derived from nanotubes and nanofibers. J. Hazard. Mater. 161, 1514 (2009).Google Scholar
Senna, M., Myers, N., Aimable, A., Laporte, V., Pulgarin, C., Baghriche, O., and Bowen, P.: Modification of titania nanoparticles for photocatalytic antibacterial activity via a colloidal route with glycine and subsequent annealing. J. Mater. Res. 28, 354 (2013).Google Scholar
Macak, J.M., Tsuchiya, H., Ghicov, A., Yasuda, K., Hahn, R., Bauer, S., and Schmuki, P.: TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Curr. Opin. Solid State Mater. Sci. 11, 3 (2007).CrossRefGoogle Scholar
Xiong, H., Slater, M.D., Balasubramanian, M., Johnson, C.S., and Rajh, T.: Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J. Phys. Chem. Lett. 2, 2560 (2011).Google Scholar
Yanga, D., Parka, H., Choa, S., Kima, H., and Choi, W.: TiO2-nanotube-based dye-sensitized solar cells fabricated by an efficient anodic oxidation for high surface area. J. Phys. Chem. Solids 69, 1272 (2008).CrossRefGoogle Scholar
Hanaor, D. and Sorrell, C.: Review of the anatase to rutile phase transformation. J. Mater. Sci. 46, 855 (2011).CrossRefGoogle Scholar
Chuangchote, S., Jitputti, J., Sagawa, T., and Yoshikawa, S.: Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers. ACS Appl. Mater. Interfaces 1, 1140 (2009).Google Scholar
Kim, D., Enomoto, N., Nakagawa, Z., and Kawamura, K.: Molecular dynamic simulation in titanium dioxide polymorphs: Rutile, brookite, and anatase. J. Am. Ceram. Soc. 79, 1095 (1996).Google Scholar
Liu, G., Wang, L., Yang, H.G., Cheng, H.M., and Lu, G.Q.M.: Titania-based photocatalysts-crystal growth, doping and heterostructuring. J. Mater. Chem. 20, 831 (2010).Google Scholar
Albetran, H., Haroosh, H., Dong, Y., Prida, V.M., O'Connor, B.H., and Low, I.M.: Phase transformations and crystallization kinetics in electrospun TiO2 nanofibers in air and argon atmospheres. Appl. Phys. A 116, 161 (2014).CrossRefGoogle Scholar
Albetran, H., Haroosh, H., Dong, Y., O'Connor, B.H., and Low, I.M.: Effect of atmosphere on crystallisation kinetics and phase relations in electrospun TiO2 nanofibres. Ceram. Trans. 246, 125 (2013).Google Scholar
Ghicov, A., Tsuchiya, H., Macak, J.M., and Schmuki, P.: Annealing effects on the photoresponse of TiO2 nanotubes. Phys. Status Solidi A 203, 28 (2006).CrossRefGoogle Scholar
Liu, Z., Yan, X., Chu, W., and Li, D.: Effects of impurities containing phosphorus on the surface properties and catalytic activity of TiO2 nanotube arrays. Appl. Surf. Sci. 257, 1295 (2010).Google Scholar
Antony, R.P., Mathews, T., Ajikumar, P.K., Krishna, D.N., Dash, S., and Tyagi, A.K.: Electrochemically synthesized visible light absorbing vertically aligned N-doped TiO2 nanotube array films. Mater. Res. Bull. 47, 4491 (2012).CrossRefGoogle Scholar
Iida, Y. and Ozaki, S.: Grain growth and phase transformation of titanium oxide during calcination. J. Am. Ceram. Soc. 44, 120 (1961).CrossRefGoogle Scholar
Shannon, R.D. and Pask, J.A.: Kinetics of the anatase-rutile transformation. J. Am. Ceram. Soc. 48, 391 (1965).Google Scholar
Li, H., Zhang, W., and Pan, W.: Enhanced photocatalytic activity of electrospun TiO2 nanofibers with optimal anatase/rutile ratio. J. Am. Ceram. Soc. 94, 3184 (2011).Google Scholar
Lee, J., Ha, T., Hong, M., and Park, H.: The effect of porosity on the CO sensing properties of TiO2 xerogel thin films. Thin Solid Films 529, 98 (2013).CrossRefGoogle Scholar
Zainal, Z. and Lee, C.Y.: Properties and photoelectrocatalytic behaviour of sol-gel derived TiO2 thin films. J. Sol-Gel Sci. Technol. 37, 19 (2006).CrossRefGoogle Scholar
Monti, D., Ponrouch, A., Estruga, M., Palacin, M.R., Ayllon, J.A., and Roig, A.: Microwaves as a synthetic route for preparing electrochemically active TiO2 nanoparticles. J. Mater. Res. 28, 340 (2013).Google Scholar
Arunchandran, C., Ramya, S., George, R.P., and Mudali, U.K.: Corrosion inhibitor storage and release property of TiO2 nanotube powder synthesized by rapid breakdown anodization method. Mater. Res. Bull. 48, 635 (2012).Google Scholar
Baram, N., Starosvetsky, D., Starosvetsky, J., Epshtein, M., Armon, R., and Ein-Eli, Y.: Enhanced photo-efficiency of immobilized TiO2 catalyst via intense anodic bias. Electrochem. Commun. 9, 1684 (2007).Google Scholar
Beh, K.P., Yam, F.K., Tneh, S.S., and Hassan, Z.: Fabrication of titanium dioxide nanofibers via anodic oxidation. Appl. Surf. Sci. 257, 4706 (2011).Google Scholar
Liao, J., Lin, S., Pan, N., Li, D., Li, S., and Li, J.: Free-standing open-ended TiO2 nanotube membranes and their promising through-hole applications. Chem. Eng. J. 211–212, 343 (2012).CrossRefGoogle Scholar
Sanchez-Tovar, R., Lee, K., Garcia-Anton, J., and Schmuki, P.: Formation of anodic TiO2 nanotube or nanosponge morphology determined by the electrolyte hydrodynamic conditions. Electrochem. Commun. 26, 1 (2012).Google Scholar
Bavykin, D.V., Kulak, A.N., and Walsh, F.C.: Control over the hierarchical structure of titanate nanotube agglomerates. Langmuir 27, 5644 (2011).Google Scholar
Bavykin, D.V., Lapkin, A.A., Plucinski, P.K., Friedrich, J.M., and Walsh, F.C.: Reversible storage of molecular hydrogen by sorption into multilayered TiO2 nanotubes. J. Phys. Chem. B 109, 19422 (2005).Google Scholar
Tan, A.W., Pingguan-Murphy, B., Ahmad, R., and Akbar, S.A.: Review of titania nanotubes: Fabrication and cellular response. Ceram. Int. 38, 4421 (2012).Google Scholar
Low, I.M., Albetran, H., Prida, V.M., Vega, V., Manurung, P., and Ionescu, M.: A comparative study on crystallization behavior, phase stability, and binding energy in pure and Cr-doped TiO2 nanotubes. J. Mater. Res. 28, 304 (2013).Google Scholar
Albetran, H., O'Connor, B.H., and Low, I.M.: Effect of vanadium ion implantation on the crystallization kinetics and phase transformation of electrospun TiO2 nanofibers. Appl. Phys. A 120, 623 (2015).Google Scholar
Okada, K., Yamamoto, N., Kameshima, Y., Yasumori, A., and MacKenzie, K.J.D.: Effect of silica additive on the anatase-to-rutile phase transition. J. Am. Ceram. Soc. 84, 1591 (2001).Google Scholar
Kisi, E.H.: Rietveld analysis of powder diffraction patterns. Mater. Forum 18, 135 (1994).Google Scholar