Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T14:49:37.755Z Has data issue: false hasContentIssue false

Petrography and geochemistry of the Carboniferous–Triassic Trinity Peninsula Group, West Antarctica: implications for provenance and tectonic setting

Published online by Cambridge University Press:  29 September 2014

PAULA CASTILLO*
Affiliation:
Research School of Earth Sciences, The Australian National University, Canberra ACT 0200, Australia Departamento de Geología, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile
JUAN PABLO LACASSIE
Affiliation:
Servicio Nacional de Geología y Minería, Av. Santa María 0104, Santiago, Chile
CARITA AUGUSTSSON
Affiliation:
Institut für Geologie und Paläontologie, Westfälische Wilhelms-Universität Münster Corrensstrasse 24, 48 149 Münster, Germany Institutt for Petroleumsteknologi, Universitetet i Stavanger, 4036 Stavanger, Norway
FRANCISCO HERVÉ
Affiliation:
Departamento de Geología, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile Escuela de Ciencias de la Tierra, Universidad Andrés Bello, Sazié 2315, Santiago, Chile
*
Author for correspondence: paula.castillo@anu.edu.au

Abstract

The Carboniferous-Triassic Trinity Peninsula Group is a metasedimentary sequence that crops out widely in the northern Antarctic Peninsula. These are some of the most extensive outcrops in the area and hold the key to evaluating the connections of the Antarctic Peninsula in Gondwana; however, they are still poorly understood. Here we present our provenance study of the Trinity Peninsula Group using petrographic and geochemical approaches in combination with cathodoluminescence of detrital quartz in order to constrain its source characteristics and tectonic setting. Using differences in modal composition and quartz cathodoluminescence characteristics, we define three petrofacies derived from the progressive uplift and erosion of a volcano-plutonic continental arc, which exposed the plutonic-metamorphic roots. As indicated by major and trace elements, the source is felsic with a composition ranging from tonalitic to granodioritic. The relatively unweathered condition of the source area points to a dry and cold climate at the time of deposition, but this does not necessarily mean that it was glaciated. Deposition of the sediments occurred within an active continental margin, relatively close to the source area, probably along the south Patagonia–Antarctic Peninsula sector of Gondwana. Strong chronological, petrological and chemical similarities with the sediments of the Duque the York Complex in Patagonia suggest that they were derived from the same source.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alarcón, B., Ambrus, J., Olcay, L. & Vieira, C. 1976. Geología del Estrecho de Gerlache entre los paralelos 64° y 65° lat. Sur, Antártica Chilena. Serie Científica del Instituto Antártico Chileno 4, 751.Google Scholar
Augustsson, C. & Bahlburg, H. 2003. Cathodoluminescence spectra of detrital quartz as provenance indicators for Paleozoic metasediments in southern Andean Patagonia. Journal of South American Earth Sciences 16, 1526.Google Scholar
Augustsson, C. & Bahlburg, H. 2008. Provenance of late Palaeozoic metasediments of the Patagonia proto-Pacific margin (southernmost Chile and Argentina). International Journal of Earth Sciences (Geologische Rundschau) 97, 7188.Google Scholar
Augustsson, C., Münker, C., Bahlburg, H. & Fanning, C. M. 2006. Provenance of late Palaeozoic metasediments of the SW South American Gondwana margin: a combined U–Pb and Hf-isotope study of single detrital zircons. Journal of the Geological Society, London 163, 983–95.Google Scholar
Augustsson, C. & Reker, A. 2012. Cathodoluminescence spectra of quartz as provenance indicators revisited. Journal of Sedimentary Research 82, 559–70.CrossRefGoogle Scholar
Barbeau, D. L., Davis, J. T., Murray, K. E., Valencia, V., Gehrels, G. E., Zahid, K. M. & Gombosi, D. J. 2010. Detrital-zircon geochronology of the metasedimentary rocks of northwestern Graham Land. Antarctic Science 22, 6578.Google Scholar
Bhatia, M. R. 1985. Composition and classification of Palaeozoic flysch mudrocks of eastern Australia: implications in provenance and tectonic setting interpretation. Sedimentary Geology 41, 249–68.Google Scholar
Bhatia, M. R. & Crook, K. A. W. 1986. Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology 92, 181–93.Google Scholar
Birkenmajer, K. 1992. Trinity Peninsula Group (Permo-Triassic) at Paradise Harbour, Antarctic Peninsula. Studia Geologica Polonica 101, 725.Google Scholar
Birkenmajer, K., Doktor, M. & Swierczewska, A. 1997. A turbidite sedimentary log of the Trinity Peninsula Group (?Upper Permian-Triassic) at Paradise Harbour, Danco Coast (Antarctic Peninsula): sedimentology and petrology. Studia Geologica Polonica 110, 6190.Google Scholar
Bradshaw, J. D., Vaughan, A. P. M., Millar, I. L., Flowerdew, M. J., Trouw, R. A. J., Fanning, C. M. & Whitehouse, M. J. 2012. Permo-Carboniferous conglomerates in the Trinity Peninsula Group at View Point, Antarctic Peninsula: sedimentology, geochronology and isotope evidence for provenance and tectonic setting in Gondwana. Geological Magazine 149, 626–44.Google Scholar
British Antarctic Survey . 1985. Northern Graham Land and the South Shetland Islands Geological Map. 1:500.000. Series BAS 500G, Sheet 2, Edition 1. Cambridge: British Antarctic Survey.Google Scholar
Cawood, P. A., Hawkesworth, C. J. & Dhuime, B. 2012. Detrital zircon record and tectonic setting. Geology 40, 875–78.Google Scholar
Dalziel, I. W. D. 1984. Tectonic Evolution of a Forearc Terrane, Southern Scotia Ridge, Antarctica. Geological Society of America Special Paper 200, 32 pp.Google Scholar
Dickinson, W. R., Beard, L. S., Brakenridge, G. R., Erjavec, J. L., Ferguson, R. C., Inman, K. F., Knepp, R. A., Lindberg, F. A. & Ryberg, P. T. 1983. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin 94, 222–35.2.0.CO;2>CrossRefGoogle Scholar
Fanning, C. M., Hervé, F., Pankhurst, R. J., Rapela, C. W., Kleiman, L. E., Yaxley, G. M. & Castillo, P. 2011. Lu-Hf isotope evidence for the provenance of Permian detritus in accretionary complexes of western Patagonia and the northern Antarctic Peninsula region. Journal of South American Earth Sciences 32, 485–96.Google Scholar
Faúndez, V., Hervé, F. & Lacassie, J. P. 2002. Provenance and depositional setting of pre-Late Jurassic turbidite complexes in Patagonia, Chile. New Zealand Journal of Geology and Geophysics 45, 411–25.Google Scholar
Fedo, C. M., Nesbitt, H. W. & Young, G. M. 1995. Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23, 921–4.Google Scholar
Flowerdew, M. J. 2008. Short Note: On the age and relation between metamorphic gneisses and the Trinity Peninsula Group, Bowman Coast, Graham Land, Antarctica. Antarctic Science 20, 511–2.Google Scholar
Floyd, P. A. & Leveridge, B. E. 1987. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. Journal of the Geological Society, London 144, 531–42.Google Scholar
Folk, R. L. 1980. Petrology of Sedimentary Rocks. Hemphill, 159 pp.Google Scholar
Forsythe, R. 1982. The late Palaeozoic to early Mesozoic evolution of southern South America: a plate tectonic interpretation. Journal of the Geological Society, London 139, 671–82.Google Scholar
Forsythe, R. D. & Mpodozis, C. 1983. Geología del Basamento pre-Jurásico Superior en el Archipiélago Madre de Dios, Magallanes, Chile. Servicio Nacional de Geología y Minería, Boletín 39, 163.Google Scholar
Ghidella, M. E., Lawver, L. A., Marenssi, S. & Gahagan, L. M. 2007. Modelos de cinemática de placas para Antártida durante la ruptura de Gondwana: una revisión. Revista Asociación Geológica Argentina 62, 636–46.Google Scholar
Ghidella, M. E., Yáñez, G. & LaBrecque, J. L. 2002. Revised tectonic implications for the magnetic anomalies of the western Weddell Sea. Tectonophysics 347, 6586.Google Scholar
Hervé, F. 1993. Palaeozoic metamorphic complexes in the Andes of Aysen, southern Chile (west of ?Occidentalia). In Proceedings of the First Circum-Pacific and Circum-Atlantic Terrane Conference (eds Ortega-Gutiérrez, F., Coney, P., Centeno-García, E. & Gomez-Caballero, A.), pp. 64–5. Guanajuato, Mexico.Google Scholar
Hervé, F., Calderón, M., Fanning, C. M., Kraus, S. & Pankhurst, R. J. 2010. SHRIMP chronology of the Magallanes Basin basement, Tierra del Fuego: Cambrian plutonism and Permian high-grade metamorphism. Andean Geology 37, 253–75.CrossRefGoogle Scholar
Hervé, R., Davidson, J., Godoy, E., Mpodozis, C. & Covacevich, V. 1981. The Late Paleozoic in Chile: stratigraphy, structure and possible tectonic framework. Anais da Academia Brasileira de Ciências 53, 362–73.Google Scholar
Hervé, F., Fanning, C. M. & Pankhurst, R. J. 2003. Detrital zircon age patterns and provenance of the metamorphic complexes of southern Chile. Journal of South American Earth Sciences 16, 107–23.Google Scholar
Hervé, F., Miller, H. & Pimpirev, C. 2005. Patagonia-Antarctica connections before Gondwana break-up. In Antarctica: Contribution to Global Earth Sciences (eds Fütterer, D. K., Damaske, D., Kleinschmidt, G., Miller, H. & Tessensohn, F.), pp. 217–28. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Hyden, G. & Tanner, P. W. G. 1981. Late Paleozoic-Early Mesozoic fore-arc basin sedimentary rocks at the Pacific margin in Western Antarctica. Geologische Rundschau 70, 529–41.Google Scholar
Ireland, T. R. 1992. Crustal evolution of New Zealand: evidence from age distribution of detrital zircons in Western Province paragneisses and Torlesse graywacke. Geochimica et Cosmochimica Acta 56, 911–20.Google Scholar
Ingersoll, R. V., Fullard, T. F., Ford, R. D., Grimm, J. P., Pickle, J. D. & Sares, S. W. 1984. The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point counting method. Journal of Sedimentary Petrology 54, 103–16.Google Scholar
Kleiman, L. E. & Japas, M. S. 2009. The Choiyoi volcanic province at 34°S–36°S (San Rafael, Mendoza, Argentina): implications for the Late Palaeozoic evolution of the southwestern margin of Gondwana. Tectonophysics 473, 283–99.Google Scholar
König, M. & Jokat, W. 2006. The Mesozoic breakup of the Weddell Sea. Journal of Geophysical Research 111, 128.Google Scholar
Lacassie, J. P., Roser, B. P. & Hervé, F. 2006. Sedimentary provenance study of the post-Early Permian to pre-Early Cretaceous metasedimentary Duque de York Colmes, Chile. Revista Geológica de Chile 33, 199219.Google Scholar
Le Maitre, R. W. 1976. The chemical variability of some common igneous rocks. Journal of Petrology 17, 589637.CrossRefGoogle Scholar
MacKinnon, T. C. 1983. Origin of the Torlesse terrane and coeval rocks, South Island, New Zealand. Geological Society of America Bulletin 93, 625–34.Google Scholar
McLennan, S. M. 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems 2, 124.Google Scholar
McLennan, S. M., Hemming, S., McDaniel, D. K. & Hanson, G. N. 1993. Geochemical approaches to sedimentation, provenance and tectonics. In Processes Controlling the Composition of Clastic Sediments (eds Johnnson, M. J. & Basu, A.), pp. 21–40. Geological Society of America Special Papers no. 285.CrossRefGoogle Scholar
Miller, H. 2007. History of views on the relative positions of Antarctica and South America: a 100-year tango between Patagonia and the Antarctic Peninsula. In Antarctica: A Keystone in a Changing World – Online Proceedings of the 10th ISAES (eds Cooper, A. K. & Raymond, C. R.), 4 pp. USGS Open-File Report 2007–1047, Short Research Paper 41.Google Scholar
Millar, I. L., Pankhurst, R. J. & Fanning, C. M. 2002. Basement chronology of the Antarctic Peninsula: recurrent magmatism and anatexis in the Palaeozoic Gondwana margin. Journal of Geological Society, London 159, 145–57.Google Scholar
Morton, A. 2012. Value of heavy minerals in sediments and sedimentary rocks for provenance, transport history and stratigraphic correlation. In Short Course Volume 42: Quantitative Mineralogy and Microanalysis of Sediments and Sedimentary Rocks (ed. Sylvester, P.), pp. 133–65. Mineralogical Association of Canada.Google Scholar
Nesbitt, H. W., Fedo, C. M. & Young, G. M. 1997. Quartz and feldspar stability, steady and non-steady state weathering, and petrogenesis of siliciclastic sands and muds. Journal of Geology 105, 173–91.CrossRefGoogle Scholar
Nesbitt, H. W. & Young, G. M. 1982. Early Proterozoic climates and plate motions inferred from mayor element chemistry of lutites. Nature 199, 715–7.CrossRefGoogle Scholar
Nesbitt, H. W. & Young, G. M. 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta 48, 1523–34.Google Scholar
Pankhurst, R. J., Rapela, C. W., Fanning, C. M. & Márquez, M. 2006. Gondwanide continental collision and the origin of Patagonia. Earth-Science Reviews 76, 235–57.Google Scholar
Pankhurst, R. J., Rapela, C. W., Loske, W. P., Márquez, M. & Fanning, C. M. 2003. Chronological study of the pre-Permian basement rocks of southern Patagonia. Journal of South American Earth Sciences 16, 2744.Google Scholar
Pickard, A. L., Adams, C. J. & Barley, M. E. 2000. Australian provenance for Upper Permian to Cretaceous rocks forming accretionary complexes on the New Zealand sector of the Gondwanaland margin. Australian Journal of Earth Sciences 47, 9871007.Google Scholar
Poblete, F., Arriagada, C., Roperch, P., Astudillo, N., Hervé, F., Kraus, S. & Le Roux, J. P. 2011. Paleomagnetism and tectonics of the South Shetland Islands and the northern Antarctic Peninsula. Earth and Planetary Science Letters 302, 299313.CrossRefGoogle Scholar
Ramos, V. A. 2008. Patagonia: a Paleozoic continent adrift? Journal of South American Earth Sciences 26, 235–51.Google Scholar
Riley, T. R., Flowerdew, M. J. & Whitehouse, M. J. 2012. U-Pb ion-microprobe zircon geochronology from the basement inliers of eastern Graham Land, Antarctic Peninsula. Journal of the Geological Society, London 169, 381–93.Google Scholar
Rocha-Campos, A. C., Basei, M. A., Nutman, A. P., Kleiman, L. E., Varela, R., Llambias, E., Canile, F. M. & da Rosa, O. C. R. 2011. 30 million years of Permian volcanism recorded in the Choiyoi igneous province (W Argentina) and their source for younger ash fall deposits in the Paraná Basin: SHRIMP U-Pb zircon geochronology evidence. Gondwana Research 19, 509–23.Google Scholar
Roser, B. P. & Korsch, R. J. 1988. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology 67, 119–39.CrossRefGoogle Scholar
Roser, B. P. & Korsch, R. J. 1999. Geochemical characterization, evolution and source of a Mesozoic accretionary wedge: the Torlesse terrane, New Zealand. Geological Magazine 136, 493512.CrossRefGoogle Scholar
Sanderson, I. D. 1984. Recognition and significance of inherited quartz overgrowths in quartz arenites. Journal of Sedimentary Petrology 54, 473–86.Google Scholar
Sepúlveda, F. A., Palma-Heldt, S., Hervé, F. & Fanning, C. M. 2010. Constraints for the depositional age of the Duque de York Complex in the allochthonous Madre de Dios Terrane, southern Chile: first palynological record and palaeoclimatic implications. Andean Geology 37, 375–97.Google Scholar
Smellie, J. L. 1987. Sandstone detrital modes and basinal setting of the Trinity Peninsula Group, northern Graham Land, Antarctic Peninsula: a preliminary survey. In Gondwana VI: Structure, Tectonics and Geophysics (ed. McKenzie, G. D.), pp. 199207. American Geophysical Union, Geophysical Monograph vol. 40. Washington, DC, USA.Google Scholar
Smellie, J. L. 1991. Stratigraphy, provenance and tectonic setting of (?)Late Palaeozoic-Triassic sedimentary sequences in northern Graham Land and South Scotia Ridge. In Geological Evolution of Antarctica (eds Thomson, M. R. A., Crame, J. A. & Thomson, J. W.), pp. 411–7. Cambridge University Press.Google Scholar
Smellie, J. L. & Millar, I. L. 1995. New K-Ar isotopic ages of schists from Nordenskjold Coast, Antarctic Peninsula: oldest part of the Trinity Peninsula Group? Antarctic Science 7, 191–96.Google Scholar
Smellie, J. L., Roberts, B. & Hirons, S. R. 1996. Very low- and low-grade metamorphism in the Trinity Peninsula Group (Permo-Triassic) of northern Graham Land, Antarctic Peninsula. Geological Magazine 133, 583–94.Google Scholar
Sölner, F., Miller, H. & Hervé, M. 2000. An Early Cambrian granodiorite age from the pre-Andean basement of Tierra del Fuego (Chile): the missing link between South America and Antarctica? Journal of South American Earth Sciences 13, 163–77.Google Scholar
Storey, B. C. & Garrett, S. W. 1985. Crustal growth of the Antarctic Peninsula by accretion, magmatism and extension. Geological Magazine 122, 514.CrossRefGoogle Scholar
Taylor, S. R. & McLennan, S. M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications, 312 pp.Google Scholar
Thomson, M. R. A. 1975. First marine Triassic fauna from the Antarctic Peninsula. Nature 257, 577–8.CrossRefGoogle Scholar
Vaughan, A. P. M. & Storey, B. C. 2000. The eastern Palmer Land shear zone: a new terrane accretion model for the Mesozoic development of the Antarctic Peninsula. Journal of the Geological Society, London 157, 1243–56.Google Scholar
Wandres, A. M. C., Bradshaw, J. D., Weaver, S. D., Maas, R., Ireland, T. R. & Eby, G. N. 2004. Provenance of the sedimentary Rakaia sub-terrane, South Island, New Zealand: the use of igneous clast compositions to define the source. Sedimentary Geology 168, 193226.Google Scholar
Willan, R. C. R. 2003. Provenance of Triassic-Cretaceous sandstones in the Antarctic Peninsula: implications for terrane models during Gondwana breakup. Journal of Sedimentary Research 73, 1062–77.CrossRefGoogle Scholar
Willner, A. P., Sepúlveda, F. A., Hervé, F., Massonne, H.-J. & Sudo, M. 2009. Conditions and timing of pumpellyite-actinolite-facies metamorphism in the Early Mesozoic frontal accretionary prism of the Madre de Dios Archipelago (Latitude 50°20’S; Southern Chile). Journal of Petrology 50, 2127–55.Google Scholar
Supplementary material: File

Castillo Supplementary Material

Table

Download Castillo Supplementary Material(File)
File 55.3 KB