Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T20:53:22.741Z Has data issue: false hasContentIssue false

The fingerprint of Precambrian basement in the Chinese Central Tianshan: evidence from inherited/xenocrystic zircons of magmatic rocks

Published online by Cambridge University Press:  22 August 2014

XUXUAN MA
Affiliation:
State Key Laboratory for Mineral Deposits Research, Nanjing University, Nanjing 210046, PR China State Key Laboratory of Continental Tectonics and Dynamics, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, PR China
LIANGSHU SHU*
Affiliation:
State Key Laboratory for Mineral Deposits Research, Nanjing University, Nanjing 210046, PR China
JOSEPH G. MEERT
Affiliation:
University of Florida, Department of Geological Sciences, 241 Williamson Hall, Gainesville, FL 32611, USA
ZHIQIN XU
Affiliation:
State Key Laboratory of Continental Tectonics and Dynamics, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, PR China
*
Author for correspondence: lsshu@nju.edu.cn

Abstract

The Central Asian Orogenic Belt is an accretionary orogen with many distinct terranes including the Chinese Central Tianshan, whose Precambrian tectonic affinity is not yet clearly known. We present Precambrian age spectra of inherited/xenocrystic zircons from magmatic rocks in the Chinese Central Tianshan, collected from published papers. The age patterns are dominated by zircons with ages ranging from 3261 to 541 Ma. These spectra provide robust clues regarding the Precambrian affinity of the Chinese Central Tianshan. The age spectra record two major tectonothermal events, represented by salient age peaks of c. 950 and 900 Ma within the ‘Grenville Orogeny’ period, and age peaks at c. 750 and 630 Ma, synchronous with magmatic events corresponding to Rodinia break-up. These results are consistent with the hypothesis that the Chinese Central Tianshan was part of the Tarim craton during Precambrian time as well as documenting its incorporation into, and separation from the Rodinia landmass.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, M. B., Windley, B. F. & Zhang, C. 1993. Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, central Asia. Tectonophysics 220, 89115.Google Scholar
Andersen, T. 2014. The detrital zircon record: supercontinents, parallel evolution – or coincidence? Precambrian Research 244, 279–87.Google Scholar
Belousova, E. A., Kostitsyn, Y. A., Griffin, W. L., Begg, G. C., O’Reilly, S. Y. & Pearson, N. J. 2010. The growth of the continental crust: constraints from zircon Hf-isotope data. Lithos 119, 457–66.Google Scholar
Charvet, J., Shu, L. S. & Laurent-Charvet, S. 2007. Paleozoic structural and geodynamic evolution of eastern Tianshan (NW China): welding of the Tarim and Junggar plates. Episodes 30, 162–86.Google Scholar
Chen, C. M., Lu, H. F., Jia, D., Cai, D. S. & Wu, S. M. 1999. Closing history of the southern Tianshan oceanic basin, western China: an oblique collisional orogeny. Tectonophysics 302, 2340.CrossRefGoogle Scholar
Chen, X. Y., Wang, Y. J., Sun, L. H. & Fan, W. M. 2009. Zircon SHRIMP U-Pb dating of the granitic gneisses from Bingdaban and Laerdundaban (Tianshan Orogen) and their geological significances. Geochimica 38, 424–31 (in Chinese with English abstract).Google Scholar
Chen, Y. B., Zhang, G. W., Liu, X. M., Xiong, X. L., Yuan, C. & Chen, L. L. 2012. Zircons LA-ICP-MS U-Pb dating on the Baluntai deformed granitoids, Central Tianshan Block, Northwest China, and its tectonic implications. Geological Review 58, 117–25 (in Chinese with English abstract).Google Scholar
Condie, K. C., Belousova, E., Griffin, W. L. & Sircombe, K. N. 2009. Granitoid events in space and time: constraints from igneous and detrital zircon age spectra. Gondwana Research 15, 228–42.Google Scholar
Dalziel, I. W. D. 1991. Pacific margins of Laurentia and East Antarctica-Australia as a conjugate rift pair: evidence and implications for an Eocambrian supercontinent. Geology 19, 598601.2.3.CO;2>CrossRefGoogle Scholar
de la Rosa, J. D., Jenner, G. A. & Castro, A. 2002. A study of inherited zircons in granitoid rocks from the South Portuguese and Ossa-Morena zones, Iberian massif: support for the exotic origin of the South Portuguese zone. Tectonophysics 352, 245–56.Google Scholar
Ernst, R. E., Buchan, K. L. & Campbell, I. H. 2005. Frontiers in Large Igneous Province research. Lithos 79, 271–97.CrossRefGoogle Scholar
Finch, R. J. & Hanchar, J. M. 2003. Structure and chemistry of zircon and zircon-group minerals. Reviews in Mineralogy and Geochemistry 53, 125.Google Scholar
Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J. & Frost, C. D. 2001. A geochemical classification for granitic rocks. Journal of Petrology 42, 2033–48.Google Scholar
Gao, Z. J., Chen, J., Lu, S. N., Peng, C. W. & Qin, Z. Y. 1993. The Precambrian Geology in Northern Xinjiang. Beijing: Geological Publishing House, pp. 1171 (in Chinese with English abstract).Google Scholar
Ge, R. F., Zhu, W. B., Wilde, S. A., He, J. W., Cui, X., Wang, X. & Zheng, B. H. 2014. Neoproterozoic to Paleozoic long-lived accretionary orogeny in the northern Tarim Craton. Tectonics 33, 302–29.Google Scholar
Ge, R. F., Zhu, W. B., Wu, H. L., He, J. W. & Zheng, B. H. 2013. Zircon U-Pb ages and Lu-Hf isotopes of Paleoproterozoic metasedimentary rocks in the Korla Complex, NW China: implications for metamorphic zircon formation and geological evolution of the Tarim Craton. Precambrian Research 231, 118.Google Scholar
Hargrove, U. S., Stern, R. J., Kimura, J. I., Manton, W. I. & Johnson, P. R. 2006. How juvenile is the Arabian-Nubian Shield? Evidence from Nd isotopes and pre-Neoproterozoic inherited zircon in the Bi’r Umq suture zone, Saudi Arabia. Earth and Planetary Science Letters 252, 308–26.Google Scholar
He, Z. Y., Zhang, Z. M., Zong, K. Q. & Dong, X. 2013. Paleoproterozoic crustal evolution of the Tarim Craton: constrained by zircon U–Pb and Hf isotopes of meta-igneous rocks from Korla and Dunhuang. Journal of Asian Earth Sciences 78, 5470.Google Scholar
He, Z. Y., Zhang, Z. M., Zong, K. Q., Wang, W. & Santosh, M. 2012. Neoproterozoic granulites from the northeastern margin of the Tarim Craton: petrology, zircon U–Pb ages and implications for the Rodinia assembly. Precambrian Research 212–213, 2133.Google Scholar
He, Z. Y., Zhang, Z. M., Zong, K. Q., Xiang, H., CHEN, X. J. & Xia, M. J. 2014. Zircon U-Pb and Hf isotopic studies of the Xingxingxia complex from Eastern Tianshan (NW China): significance to the reconstruction and tectonics of the southern Central Asian Orogenic Belt. Lithos 190–191, 485–99.CrossRefGoogle Scholar
Hu, A. Q., Jahn, B. M., Zhang, G. X., Chen, Y. B. & Zhang, Q. F. 2000. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotopic evidence. Part I. Isotopic characterization of basement rocks. Tectonophysics 328, 1551.Google Scholar
Hu, A. Q., Wei, G. J., Deng, W. F., Zhang, J. B. & Chen, L. L. 2006. 1.4 Ga SHRIMP U-Pb age for zircons of granodiorite and its geological significance from the eastern segment of the Tianshan Mountains, Xinjiang, China. Geochimica 35, 333–45 (in Chinese with English abstract).Google Scholar
Hu, A. Q., Wei, G. J., Jahn, B. M., Zhang, J. B., Deng, W. F. & Chen, L. L. 2010. Formation of the 0.9 Ga Neoproterozoic granitoids in the Tianshan Orogen, NW China: constraints from the SHRIMP zircon age determination and its tectonic significance. Geochimica 39, 197212 (in Chinese with English abstract).Google Scholar
Hu, A. Q., Zhang, Z. G., Liu, J. Y. & Peng, J. H. 1986. U-Pb age and evolution of Precambrian metamorphic rocks of middle Tianshan uplift zone, Eastern Tianshan, China. Geochimica 1, 2335 (in Chinese with English abstract).Google Scholar
Huang, B. T., He, Z. Y., Zong, K. Q. & Zhang, Z. M. 2014. Zircon U-Pb and Hf isotopic study of Neoproterozoic granitic gneisses from the Alatage area, Xinjiang: constraints on the Precambrian crustal evolution in the Central Tianshan Block. Chinese Science Bulletin 59, 100–12.Google Scholar
Ireland, T. R., Flöttmann, T., Fanning, C. M., Gibson, G. M. & Preiss, W. V. 1998. Development of the early Paleozoic Pacific margin of Gondwana from detrital-zircon ages across the Delamerian orogen. Geology 26, 243–6.2.3.CO;2>CrossRefGoogle Scholar
Kröner, A., Demoux, A., Zack, T., Rojas-Agramonte, Y., Jian, P., Tomurhuu, D. & Barth, M. 2011. Zircon ages for a felsic volcanic rock and arc-related early Palaeozoic sediments on the margin of the Baydrag microcontinent, central Asian orogenic belt, Mongolia. Journal of Asian Earth Sciences 42, 1008–17.Google Scholar
Lei, R. X., Wu, C. Z., Chi, G. X., Gu, L. X., Dong, L. H., Qu, X., Jiang, Y. H. & Jiang, S. Y. 2013. The Neoproterozoic Hongliujing A-type granite in Central Tianshan (NW China): LA-ICP-MS zircon U-Pb geochronology, geochemistry, Nd-Hf isotope and tectonic significance. Journal of Asian Earth Sciences 74, 142–54.Google Scholar
Li, Z. X., Bogdanova, S. V., Collins, A. S., Davidson, A., De Waele, B., Ernst, R. E., Fitzsimons, I. C. W., Fuck, R. A., Gladkochub, D. P., Jacobs, J., Karlstrom, K. E., Natapovm, L. M., Lu, S., Natapov, L. M., Pease, V., Pisarevsky, S. A., Thrane, K. & Vernikovsky, V. 2008. Assembly, configuration, and break–up history of Rodinia: a synthesis. Precambrian Research 160, 179210.Google Scholar
Li, Q. G., Liu, S. W., Wang, Z. Q., Yan, Q. R., Guo, Z. J., Zhang, Z. C., Zheng, H. F., Jiang, C. F., Wang, T. & Chu, Z. Y. 2007. Geochemical constraints on the petrogenesis of the Proterozoic granitoid gneisses from the eastern segment of the Central Tianshan Tectonic Zone, northwestern China. Geological Magazine 144, 305–17.CrossRefGoogle Scholar
Liu, S. W., Guo, Z. J., Zhang, Z. C., Li, Q. G. & Zheng, H. F. 2004. Nature of the Precambrian metamorphic blocks in the eastern segment of Central Tianshan: constraint from geochronology and Nd isotopic geochemistry. Science in China Series D Earth Sciences 47, 1085–94.Google Scholar
Long, X. P., Sun, M., Yuan, C., Kröner, A. & Hu, A. Q. 2012. Zircon REE patterns and geochemical characteristics of Paleoproterozoic anatectic granite in the northern Tarim Craton, NW China: implications for the reconstruction of the Columbia supercontinent. Precambrian Research 222–223, 474–87.Google Scholar
Lu, S. N., Li, H. K., Zhang, C. L. & Liu, G. H. 2008. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments. Precambrian Research 160, 94107.Google Scholar
Ma, X. X., Shu, L. S., Santosh, M. & Li, J. Y. 2013. Paleoproterozoic collisional orogeny in Central Tianshan: assembling the Tarim Block within the Columbia supercontinent. Precambrian Research 228, 119.CrossRefGoogle Scholar
Meert, J. G. 2014. Strange attractors, spiritual interlopers and lonely wanderers: the search for pre-Pangean supercontinents. Geoscience Frontiers 5, 155–66.Google Scholar
Meert, J. G., Pandit, M. K. & Kamenov, G. D. 2013. Further geochronological and paleomagnetic constraints on Malani (and pre-Malani) magmatism in NW India. Tectonophysics 608, 1254–67.Google Scholar
Meert, J. G. & Torsvik, T. H. 2003. The making and unmaking of a supercontinent: Rodinia revisited. Tectonophysics 375, 261–88.Google Scholar
Moecher, D. P. & Samson, S. D. 2006. Differential zircon fertility of source terranes and natural bias in the detrital zircon record: implications for sedimentary provenance analysis. Earth and Planetary Science Letters 247, 252–66.Google Scholar
Moores, E. M. 1991. Southwest U.S.-East Antarctic (SWEAT) connection: a hypothesis. Geology 19, 425–8.Google Scholar
Paulsson, O. & Andreasson, P. G. 2002. Attempted break-up of Rodinia at 850 Ma: geochronological evidence from the Seve-Kalak Superterrane, Scandinavian Caledonides. Journal of the Geological Society, London 159, 751–61.Google Scholar
Peng, M. X., Zhong, C. G., Zuo, Q. H., Zhu, W. M., Yang, S. W. & Huang, X. 2012. The formation age and their geological significance of gneissose granites neighbouring Kawabulake area in East Tianshan Mountain. Xinjiang Geology 30, 12–8 (in Chinese with English abstract).Google Scholar
Rojas-Agramonte, Y., Kröner, A., Demoux, A., Xia, X., Wang, W., Donskaya, T., Liu, D. & Sun, M. 2011. Detrital and xenocrystic zircon ages from Neoproterozoic to Palaeozoic arc terranes of Mongolia: significance for the origin of crustal fragments in the Central Asian Orogenic Belt. Gondwana Research 19, 751–63.Google Scholar
Shu, L. S., Charvet, J. & Ma, R. S. 1998. Study of a large scale Paleozoic dextral strike-slip ductile shear zone along the northern margin of the Central Tianshan, Xinjiang. Xinjiang Geology 16, 326–36 (in Chinese with English abstract).Google Scholar
Shu, L. S., Deng, X. L., Zhu, W. B., Ma, D. S. & Xiao, W. J. 2011. Precambrian tectonic evolution of the Tarim Block, NW China: new geochronological insights from the Quruqtagh domain. Journal of Asian Earth Sciences 42, 774–90.CrossRefGoogle Scholar
Smyth, H. R., Hamilton, P. J., Hall, R. & Kinny, P. D. 2007. The deep crust beneath island arcs: inherited zircons reveal a Gondwana continental fragment beneath East Java, Indonesia. Earth and Planetary Science Letters 258, 269–82.Google Scholar
Turner, S. A. 2010. Sedimentary record of Late Neoproterozoic rifting in the NW Tarim Basin, China. Precambrian Research 181, 8596.Google Scholar
Wang, B., Shu, L. S., Faure, M., Jahn, B. M., Cluzel, D., Charvet, J., Chung, S. L. & Meffre, S. 2011. Paleozoic tectonics of the southern Chinese Tianshan: insights from structural, chronological and geochemical studies of the Heiyingshan ophiolitic mélange (NW China). Tectonophysics 497, 85104.Google Scholar
Windley, B. F., Alexeiev, D., Xiao, W. J., Kröner, A. & Badarch, G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, London 164, 3147.Google Scholar
XBGMR (Xinjiang Bureau of Geology and Mineral Resources). 1992. Geological Map of Xinjiang Uygur Autonomous Region (scale 1: 1500000). Beijing: Geological Publishing House.Google Scholar
Xiu, Q. Y., Yu, H. F. & Li, Q. 2002. A single zircon U-Pb age for the granodiorite of Kawabulark complex, Xinjiang, China. Xinjiang Geology 20, 335–7 (in Chinese with English abstract).Google Scholar
Xu, Z. Q., He, B. Z., Zhang, C. L., Zhang, J. X., Wang, Z. M. & Cai, Z. H. 2013. Tectonic framework and crustal evolution of the Precambrian basement of the Tarim Block in NW China: new geochronological evidence from deep drilling samples. Precambrian Research 235, 150–62.Google Scholar
Xu, B., Jian, P., Zheng, H. F., Zou, H. B., Zhang, L. F. & Liu, D. Y. 2005. U-Pb zircon geochronology and geochemistry of Neoproterozoic volcanic rocks in the Tarim Block of northwest China: implications for the breakup of Rodinia supercontinent and Neoproterozoic glaciations. Precambrian Research 136, 107–23.Google Scholar
Xu, B., Zou, H. B., Chen, Y., He, J. Y. & Wang, Y. 2013. The Sugetbrak basalts from northwestern Tarim Block of northwest China: geochronology, geochemistry and implications for Rodinia breakup and ice age in the Late Neoproterozoic. Precambrian Research 236, 214–26.Google Scholar
Zhang, C. L., Li, X. H., Li, Z. X., Lu, S. N., Ye, H. F. & Li, H. M. 2007. Neoproterozoic ultramafic-mafic-carbonatite complex and granitoids in Quruqtagh of northeastern Tarim Block, western China: geochronology, geochemistry and tectonic implications. Precambrian Research 152, 149–68.Google Scholar
Zhang, Z. Y., Zhu, W. B., Shu, L. S., Su, J. B. & Zheng, B. H. 2009. Neoproterozoic ages of the Kuluketage diabase dyke swarm in Tarim, NW China, and its relationship to the breakup of Rodinia. Geological Magazine 146, 150–4.Google Scholar
Zhu, W. B., Zhang, Z. Y., Shu, L. S., Lu, H. F., Su, J. B. & Yang, W. 2008. SHRIMP U–Pb zircon geochronology of Neoproterozoic Korla mafic dykes in the northern Tarim Block, NW China: implications for the long lasting break–up process of Rodinia. Journal of the Geological Society, London 165, 887–90.Google Scholar
Supplementary material: File

Ma Supplementary Material

Supplementary Material

Download Ma Supplementary Material(File)
File 93.7 KB