Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-17T12:48:37.868Z Has data issue: false hasContentIssue false

Provenance and rift basin architecture of the Neoproterozoic Hedmark Basin, South Norway inferred from U–Pb ages and Lu–Hf isotopes of conglomerate clasts and detrital zircons

Published online by Cambridge University Press:  02 May 2014

JARKKO LAMMINEN*
Affiliation:
Department of Geosciences, University of Oslo, PO Box 1047, Blindern, N-0316 Oslo, Norway Boliden Mineral AB, Kontorsvägen 1, 93681 Boliden, Sweden
TOM ANDERSEN
Affiliation:
Department of Geosciences, University of Oslo, PO Box 1047, Blindern, N-0316 Oslo, Norway
JOHAN PETTER NYSTUEN
Affiliation:
Department of Geosciences, University of Oslo, PO Box 1047, Blindern, N-0316 Oslo, Norway
*
Author for correspondence: jarkko.lamminen@boliden.com

Abstract

The Neoproterozoic Hedmark Basin in the Caledonides of South Norway was formed at the western margin of the continent Baltica by rifting 750–600 Ma ago. The margin was destroyed in the Caledonian Orogeny and sedimentary basins translated eastwards. This study uses provenance analysis to map the crustal architecture of the pre-Caledonian SW Baltican margin. Conglomerate clasts and sandstones were sampled from submarine fan, alluvial fan and terrestrial glacigenic sedimentary rocks. Samples were analysed for U–Pb isotopes and clast samples additionally for Lu–Hf isotopes. The clasts are mainly granites c. 960 Ma and 1680 Ma old, coeval with the Sveconorwegian Orogeny and formation of the Palaeoproterozoic Transscandinavian Igneous Belt (TIB). Mesoproterozoic (Sveconorwegian) ages are abundant in the western part of the basin, whereas Palaeoproterozoic ages are common in the east. Lu–Hf isotopes support crustally contaminated source for all clasts linking them to Fennoscandia. Detrital zircon ages of the sandstones can be matched with those from the granitic clasts except for ages within the range 1200–1500 Ma. These ages are typically found in the present-day Telemark, SW Norway. The sandstones and conglomerate clasts in the western part of the Hedmark Basin were sourced from the Sveconorwegian domain in the present SW Norway or its continuation to the present-day NW. The conglomerate clasts in the eastern part of the Hedmark Basin were sourced mainly from the TIB domain or its northwesterly continuation. The Hedmark Basin was initiated within the boundary of two domains in the basement: the TIB and the Sveconorwegian domains.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Åhäll, K.-I. & Connelly, J. N. 2008. Long-term convergence along SW Fennoscandia: 330 m.y. of Proterozoic crustal growth. Precambrian Research 161, 452–74.Google Scholar
Åhäll, K.-I. & Gower, C. F. 1997. The Gothian and Labradorian orogens: variations in accretionary tectonism along a late Paleoproterozoic Laurentia-Baltica margin. GFF 119, 181–91.Google Scholar
Åhäll, K.-I. & Larson, S. Å. 2000. Growth-related 1.85–1.55 Ga magmatism in the Baltic shield; a review addressing the tectonic characteristics of Svecofennian, TIB 1-related, and Gothian events. GFF 122, 193206.CrossRefGoogle Scholar
Allen, J. R. L. 1985. Principles of Physical Sedimentology. London: George Allen & Unwin, 272 pp.Google Scholar
Alm, E., Sundblad, K. & Schoberg, H. 2002. Geochemistry and age of two orthogneisses in the Proterozoic Mjøsa-Vänern ore district, southwestern Scandinavia. GFF 124, 4561.CrossRefGoogle Scholar
Andersen, T. 2005. Terrane analysis, regional nomenclature and crustal evolution in southwestern Fennoscandia. GFF 127, 157–66.Google Scholar
Andersen, T., Andersson, U. B., Graham, S., Åberg, G. & Simonsen, S. L. 2009. Granitic magmatism by melting of juvenile continental crust: new constraints on the source of Palaeoproterozoic granitoids in Fennoscandia from Hf isotopes in zircon. Journal of the Geological Society 166, 233–47.Google Scholar
Andersen, T., Andresen, A. & Sylvester, A. G. 2001. Nature and distribution of deep crustal reservoirs in the southwestern part of the Baltic Shield: evidence from Nd, Sr and Pb isotope data on late Sveconorwegian granites. Journal of the Geological Society 158, 253–67.Google Scholar
Andersen, T., Andresen, A. & Sylvester, A. G. 2002. Age and petrogenesis of the Tinn granite, Telemark, South Norway, and its geochemical relationship to metarhyolite of Rjukan Group. Norges Geologiske Undersøkelse Bulletin 440, 1926.Google Scholar
Andersen, T.B., Corfu, F., Labrousse, L. & Osmundsen, P.-T. 2012. Evidence for hyperextension along the pre-Caledonian margin of Baltica. Journal of the Geological Society 169, 601–12.Google Scholar
Andersen, T., Griffin, W. L., Jackson, S. E., Knudsen, T.-L. & Pearson, N. J. 2004. Mid-Proterozoic magmatic arc evolution at the southwest margin of the Baltic shield. Lithos 73, 289318.Google Scholar
Andersen, T., Griffin, W. L. & Pearson, N. J. 2002. Crustal evolution in the SW part of the Baltic Shield: the Hf isotope evidence. Journal of Petrology 43, 1725–47.Google Scholar
Andersen, T., Graham, S. & Sylvester, A. G. 2009. The geochemistry, Lu–Hf isotope systematics, and petrogenesis of late Mesoproterozoic a-type granites in southwestern Fennoscandia. The Canadian Mineralogist 47, 1399–422.CrossRefGoogle Scholar
Andersson, U. B., Sjöström, H., Högdahl, K. & Eklund, O. 2004. The Transscandinavian igneous belt, evolutionary models. In The Transscandinavian Igneous Belt (TIB) in Sweden; a Review of its Character and Evolution (eds Högdahl, K., Andersson, U. B. & Eklund, O.), pp. 104–12. Geological Survey of Finland, Special Paper 37.Google Scholar
Batterson, M. J. & Taylor, D. M. 2003. Regional till geochemistry and surficial geology of the Western Avalon Peninsula and Isthmus. Current Research. Newfoundland Department of Mines and Energy, Geological Survey Report 03–01, 259–72.Google Scholar
Be’eri-Shlevin, Y., Gee, D. G., Claesson, S., Ladenberger, A., Majka, J., Kirkland, C. L., Robinson, P. & Frei, D. 2011. Provenance of Neoproterozoic sediments in the Särv nappes (Middle Allochthon) of the Scandinavian Caledonides: LA-ICP-MS and SIMS U-Pb dating of detrital zircons. Precambrian Research 187, 181200.Google Scholar
Benn, D. I. 1992. The genesis and significance of ‘hummocky moraine’: evidence from the Isle of Skye, Scotland. Quaternary Science Reviews 11, 781–99.Google Scholar
Bingen, B., Belousova, E. A. & Griffin, W. L. 2011. Neoproterozoic recycling of the Sveconorwegian orogenic belt: detrital-zircon data from the Sparagmite basins in the Scandinavian Caledonides. Precambrian Research 189, 347–67.Google Scholar
Bingen, B., Demaiffe, D. & van Breemen, O. 1998. The 616 Ma old Egersund basaltic dike swarm, SW Norway, and late Neoproterozoic opening of the Iapetus ocean. Journal of Geology 106, 565–74.CrossRefGoogle Scholar
Bingen, B., Griffin, W. L., Torsvik, T. H. & Saeed, A. 2005. Timing of Late Neoproterozoic glaciation on Baltica constrained by detrital zircon geochronology in the Hedmark Group, south-east Norway. Terra Nova 17, 250–58.Google Scholar
Bingen, B., Nordgulen, Ø., Sigmond, E. M. O., Tucker, R., Mansfeld, J. & Högdahl, K. 2003. Relations between 1.19–1.13 Ga continental magmatism, sedimentation and metamorphism, Sveconorwegian province, S Norway. Precambrian Research 124, 215–41.Google Scholar
Bingen, B., Nordgulen, Ø. & Viola, G. 2008. A four-phase model for the Sveconorwegian orogeny, SW Scandinavia. Norwegian Journal of Geology 88, 4372.Google Scholar
Birkeland, A., Sigmond, E. M. O., Whitehouse, M. J. & Vestin, J. 1997. From Archaean to Proterozoic on Hardangervidda, South Norway. Norges Geologiske Undersøkelse Bulletin 433, 45.Google Scholar
Bjørlykke, K., Elvsborg, A. & Høy, T. 1976. Late Precambrain sedimentation in the central sparagmite basin of South Norway. Norsk Geologisk Tidsskrift 56, 233–90.Google Scholar
Bjørlykke, K. & Nystuen, J. P. 1981. Late Precambrian tillites of South Norway. In Earth's Pre-Pleistocene Glacial Record (eds Hambrey, M. J. and Harland, W. B.), pp. 624–8. Cambridge: Cambridge University Press.Google Scholar
Blair, T. C. 1999. Alluvial fan and catchment initiation by rock avalanching, Owens Valley, California. Geomorphology 28, 201–21.CrossRefGoogle Scholar
Brecke, D. M. & Goodge, J. W. 2007. Provenance of glacially transported material near Nimrod Glacier, East Antarctica: evidence of the ice-covered East Antarctic shield. In Antarctica: A Keystone in a Changing World, online proceedings of the 10th ISAES X (eds A. K. Cooper and C. R. Raymond). USGS open file report 2007–1047, extended abstract 125, 4 pp.Google Scholar
Bull, W. B. 1964. Geomorphology of segmented alluvial fans in western Fresno County, California. US Geological Survey, Professional Paper no. 352, 89–129.Google Scholar
Corfu, F. & Laajoki, K. 2008. An uncommon episode of mafic magmatism at 1347 Ma in the Mesoproterozoic Telemark supracrustals, Sveconorwegian orogen - implications for stratigraphy and tectonic evolution. Precambrian Research 160, 299307.Google Scholar
Dade, W. B. & Verdeyen, M. E. 2007. Tectonic and climatic controls of alluvial-fan size and source-catchment relief. Journal of the Geological Society 164, 353–8.Google Scholar
Denny, C. S. 1965. Alluvial fans in the Death Valley Region, California and Nevada. US Geological Survey, Professional Paper no. 466, 1–62.Google Scholar
Englund, J.-O. 1966. Sparagmittgruppens bergarter ved Fåvang, Gudbrandsdalen. En sedimentologisk og tektonisk undersøkelse. Norges Geologiske Undersøkelse 238, 55103.Google Scholar
Englund, J.-O. 1972. Sedimentological and structural investigations of the Hedmark Group in the Tretten-Øyer-Fåberg district, Gudbrandsdalen. Norges Geologiske Undersøkelse 276, 159.Google Scholar
Englund, J.-O. 1973. Stratigraphy and structure of the Ringebu-Vinstra district, Gudbrandsdalen; with a short analysis of the western part of the sparagmite region in Southern Norway. Norges Geologiske Undersøkelse 293, 158.Google Scholar
Gaál, G. & Gorbatschev, R. 1987. An outline of the Precambrian evolution of the Baltic Shield. Precambrian Research 35, 1552.Google Scholar
Gawthorpe, R. L. & Leeder, M. R. 2000. Tectono-sedimentary evolution of active extensional basins. Basin Research 12, 195218.CrossRefGoogle Scholar
Gee, D. G. 1975. A tectonic model for the central part of the Scandinavian Caledonides. American Journal of Science 275–A, 468515.Google Scholar
Gee, D. G. 1978. Nappe displacement in the Scandinavian Caledonides. Tectonophysics 47, 393419.Google Scholar
Gee, D. G., Juhlin, C., Pascal, C. & Robinson, P. 2010. Collision Orogeny in the Scandinavian Caledonides (COSC). GFF 132, 2944.Google Scholar
Gee, D. G., Kumpulainen, R., Roberts, D., Stephens, M. B., Thon, A. & Zachrisson, E. 1985. Scandinavian Caledonides –Tectonostratigraphic Map, Scale 1:2,000,000. In The Caledonide Orogen – Scandinavia and Related Areas (eds Gee, D. G. & Sturt, B. A.). Chichester: John Wiley & Sons Ltd.Google Scholar
Gorbatschev, R. 1980. The Precambrian development of southern Sweden. GFF 102, 129–36.Google Scholar
Gorbatschev, R. 2004. The Transscandinavian Igneous Belt: introduction and background. In The Transscandinavian Igneous Belt (TIB) in Sweden; a Review of its Character and Evolution (eds Högdahl, K., Andersson, U. B. & Eklund, O.), pp. 915. Geological Survey of Finland, Special Paper 37.Google Scholar
Heim, M., Skiöld, T. & Wolff, F. C. 1996. Geology, geochemistry and age of the ‘Tricolor’ granite and some other Proterozoic (TIB) granitoids at Trysil, southeast Trysil. Norsk Geologisk Tidsskrift 76, 4554.Google Scholar
Holme, A. C. A. E. F. 2002. The Biskopåsen Formation: a conglomeratic turbidite system in the Hedmark rift basin. M.Sc. thesis, Department of Geology, University of Oslo, Norway. Published thesis.Google Scholar
Hossack, J. R., Garton, M. R. & Nickelsen, R. P. 1985. The geological section from the foreland up to the Jotun thrust sheet in the Valdres area, South Norway. In The Caledonide Orogen: Scandinavia and Related Areas (eds Gee, D. G. and Sturt, B. A.), pp. 443–56. Chichester: John Wiley & Sons Ltd.Google Scholar
Howard, K. E., Hand, M., Barovich, K. M., Reid, A., Wade, B. P. & Belousova, E. A. 2009. Detrital zircon ages: improving interpretation via Nd and Hf isotopic data. Chemical Geology 262, 277–92.Google Scholar
Högdahl, K., Andersson, U. B. & Eklund, O. (eds) 2004. The Transscandinavian Igneous Belt (TIB) in Sweden: a Review of its Character and Evolution. Geological Survey of Finland, Special Paper 37, 125 pp.Google Scholar
Kumpulainen, R. A. 2011. The Neoproterozoic Lillfjället Formation, southern Swedish Caledonides. In The Geological Record of Neoproterozoic Glaciations (eds Arnaud, E., Halverson, G. P. & Shields-Zhou, G.), pp. 629–34. Geological Society of London, Memoir no. 36.Google Scholar
Kumpulainen, R. & Nystuen, J. P. 1985. Late Proterozoic basin evolution and sedimentation in the westernmost part of Baltoscandia. In The Caledonide Orogen: Scandinavia and Related Areas (eds Gee, D. G. and Sturt, B. A.), pp. 213–32. Chichester: John Wiley & Sons Ltd.Google Scholar
Kunz, A. 2002. Coarse-clastic submarine fan developement in a rift basin. Neoproterozoic Ring Formation, South Norway. M.Sc. thesis, Department of Geology, University of Oslo, Norway. Published thesis.Google Scholar
Kuznetsov, N. B., Soboleva, A. A., Udoratina, O. V., Gertseva, O. V. & Andreichev, V. L. 2007. Pre-Ordovician tectonic evolution and volcanoplutonic associations of the Timanides and northern pre-Uralides, northeast part of the East European Craton. Gondwana Research 12, 305–23.Google Scholar
Lamminen, J., Andersen, T. & Nystuen, J. P. 2011. Zircon U-Pb ages and Lu-Hf isotopes from basement rocks associated with Neoproterozoic sedimentary successions in the Sparagmite Region and adjacent areas, South Norway: the crustal architecture of western Baltica. Norwegian Journal of Geology 91, 3555.Google Scholar
Lamminen, J., Andersen, T. & Nystuen, J. P. 2012. The Rosten Formation, South Norwegian Caledonides: early Sveconorwegian magmatic province at the Baltoscandian margin. Norwegian Journal of Geology 91, 229–37.Google Scholar
Larson, S. Å. & Berglund, J. 1992. A chronological subdivision of the Transscandinavian Igneous Belt – three magmatic episodes? Geologiska Föreningens i Stockholm Förhandlingar 114, 459–61.Google Scholar
Li, Z. X., Bogdanova, S. V., Collins, A. S., Davidson, A., De Waele, B., Ernst, R. E., Fitzsimons, I. C. W., Fuck, R. A., Gladkochub, D. P., Jacobs, J., Karlstrom, K. E., Lu, S., Natapov, L. M., Pease, V., Pisarevsky, S. A., Thrane, K. & Vernikovsky, V. 2008. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Research 160, 179210.CrossRefGoogle Scholar
Lindsey, D. A., Langer, W. H. & Van Gosen, B. S. 2007. Using pebble lithology and roundness to interpret gravel provenance in piedmont fluvial systems of the Rocky Mountains, USA. Sedimentary Geology 199, 223–32.Google Scholar
Løberg, B. E. 1970. Investigations at the south-western border of the sparagmite basin (Gausdal Vestfjell and Fåberg Vestfjell), southern Norway. Norges Geologiske Undersøkelse 266, 160205.Google Scholar
Ludwig, K. R. 1998. On the treatment of concordant uranium–lead ages. Geochimica et Cosmochima Acta 62, 665–76.Google Scholar
Marich, A., Batterson, M. & Bell, T. 2005. The morphology and sedimentological analyses of Rogen moraines, central Avalon peninsula, Newfoundland. Current Research. Newfoundland and Labrador Department Natural Resources, Geological Survey, Report 05–01, 1–14.Google Scholar
Martins-Neto, M. & Catuneanu, O. 2010. Rift sequence stratigraphy. Marine and Petroleum Geology 27, 247–53.Google Scholar
Miller, E. L., Kuznetsov, N., Soboleva, A., Udoratina, O., Grove, M. J. & Gehrels, G. 2011. Baltica in the Cordillera? Geology 39, 791–4.Google Scholar
Mills, H. H. 1979. Downstream rounding of pebbles: a quantitative review. Journal of Sedimentary Petrology 49, 295302.Google Scholar
Morad, S. 1988. Albitized microcline grains of post-depositional and probable detrital origin in Brøttum Formation sandstones (Upper Proterozoic), Sparagmite Region of southern Norway. Geological Magazine 125, 229–39.Google Scholar
Morley, C. K. 1986. The Caledonian thrust front and palinspastic restorations in the southern Norwegian Caledonides. Journal of Structural Geology 8, 753–65.Google Scholar
Murphy, J. B., Pisarevsky, S. A., Nance, R. D. & Keppie, J. D. 2004. Neoproterozoic–early Paleozoic evolution of peri-Gondwanan terranes: implications for Laurentia–Gondwana connections. International Journal of Earth Sciences 93, 659–92.Google Scholar
Nøttvedt, A., Gabrielsen, R. H. & Steel, R. J. 1995. Tectonostratigraphy and sedimentary architecture of rift basins, with reference to the northern North Sea. Marine and Petroleum Geology 12, 881901.Google Scholar
Nystuen, J. P. 1976. Facies and Sedimentation of the Late Precambrian Moelv Tillite in the Eastern Part of the Sparagmite Region, Southern Norway. Norges Geologiske Undersøkelse 329, 1170.Google Scholar
Nystuen, J. P. 1981. The late Precambrian “sparagmites” of southern Norway; a major Caledonian allochthon; the Osen-Roa nappe complex. American Journal of Science 281, 6994.CrossRefGoogle Scholar
Nystuen, J. P. 1982. Late Proterozoic basin evolution on the Baltoscandian Craton: the Hedmark Group, southern Norway. Norges Geologiske Undersøkelse 375, 174.Google Scholar
Nystuen, J. P. 1983. Nappe and thrust structures in the Sparagmite Region, southern Norway. Norges Geologiske Undersøkelse 380, 6783.Google Scholar
Nystuen, J. P. 1985. Facies and preservation of glaciogenic sequences from the Varanger Ice Age in Scandinavia and other parts of the North Atlantic Region. Palaeogeography, Palaeoclimatology, Palaeoecology 51, 209–29.CrossRefGoogle Scholar
Nystuen, J. P. 1987. Synthesis of the tectonic and sedimentological evolution of the late Proterozoic-Early Cambrian Hedmark Basin, the Caledonian thrust belt, southern Norway. Norsk geologisk tidsskrift 67, 395418.Google Scholar
Nystuen, J. P., Andresen, A., Kumpulainen, R. A. & Siedlecka, A. 2008. Neoproterozoic basin evolution in Fennoscandia, East Greenland and Svalbard. Episodes 31, 3543.Google Scholar
Nystuen, J. P. & Lamminen, J. 2011. Neoproterozoic glaciation of South Norway: from continental interior to rift and pericratonic basins in western Baltica. In The Geological Record of Neoproterozoic Glaciations (eds Arnaud, E., Halverson, G. P. & Shields-Zhou, G.), pp. 613–22. Geological Society of London, Memoir no. 36.Google Scholar
Nystuen, J. P. & Sæther, T. 1979. Clast studies in the late Precambrian Moelv Tillite and Osdal Conglomerate, sparagmite region, South Norway. Norsk Geologisk Tidsskrift 59, 239–51.Google Scholar
Orlov, S. Yu., Kuznetsov, N. B., Miller, E. D., Soboleva, A. A. & Udoratina, O. V. 2011. Age constraints for the pre-Uralide–Timanide orogenic event inferred from the study of detrital zircons. Doklady Earth Sciences 440, 1216–21.Google Scholar
Pease, V., Daly, J. S., Elming, S.-Å., Kumpulainen, R., Moczydlowska, M., Puchkov, V., Roberts, D., Saintot, A. & Stephenson, R. 2008. Baltica in the Cryogenian, 850–630 Ma. Precambrian Research 160, 4665.Google Scholar
Pease, V. & Scott, R. A. 2009. Crustal affinities in the Arctic Uralides, northern Russia: significance of detrital zircon ages from Neoproterozoic and Palaeozoic sediments in Novaya Zemlya and Taimyr. Journal of the Geological Society 166, 517–27.CrossRefGoogle Scholar
Põldvere, A., Isozaki, Y., Bauert, H., Kirs, J., Aoki, K., Sakata, S. & Hirata, T. 2014. Detrital zircon ages of Cambrian and Devonian sandstones from Estonia, central Baltica: a possible link to Avalonia during the Late Neoproterozoic. GFF, published online 31 January 2014. doi: 10.1080/11035897.2013.873986.Google Scholar
Prosser, S. 1993. Rift-related linked depositional systems and their seismic expression. In Tectonics and Seismic Sequence Stratigraphy (eds Williams, G.D. and Dobb, A.), pp. 3566. Geological Society of London, Special Publication no. 71, 35–66.Google Scholar
Ramberg, I. B. & Englund, J.-O. 1969. The source rock of the Biskopås Conglomerate at Fåvang, and the western margin of the sedimentation of the Brøttum Formation at Fåvang-Vinstra, Southern Norway. Norges Geologiske Undersøkelse 258, 302–24.Google Scholar
Rice, A. H. N. 2005. Quantifying the exhumation of UHP-rocks in the Western Gneiss Region, S. W. Norway: a branch-line – balanced cross section model. Austrian Journal of Earth Sciences 98, 221.Google Scholar
Roberts, D. & Gee, D. G. 1985. An introduction to the structure of the Scandinavian Caledonides. In The Caledonide Orogen: Scandinavia and Related Areas (eds Gee, D. G. & Sturt, B. A.), pp. 5568. London: John Wiley & Sons.Google Scholar
Sarala, P. & Rossi, S. 2000. The application of till geochemistry in exploration in the Rogen moraine area at Petäjävaara, northern Finland. Journal of Geochemical Exploration 68, 87104.Google Scholar
Siedlecka, A., Nystuen, J. P., Englund, J.-O. & Hossack, J. 1987. Lillehammer–berggrunnskart (bedrock map) M. 1:250 000. Norges Geologiske Undersøkelse.Google Scholar
Siedlecka, A., Roberts, D., Nystuen, J. P. & Olovyanishnikov, V. G. 2004. Northeastern and northwestern margins of Baltica in Neoproterozoic time: evidence from the Timanian and Caledonian Orogens. In The Neoproterozoic Timanide Orogen of Eastern Baltica (eds Gee, D. G. & Pease, V.), pp. 169–90. Geological Society of London, Memoir no. 30.Google Scholar
Sigmond, E. M. O., Birkeland, A. & Bingen, B. 2000. A possible basement to the Mesoproterozoic quartzites on Hardangervidda, South-central Norway: zircon U-Pb geochronology of a migmatitic gneiss. Norges Geologiske Undersøkelse Bulletin 437, 2532.Google Scholar
Skaten, M. K. M. S. 2006. The Lillehammer Submarine Fan Complex. M.Sc. thesis, Department of Geosciences, University of Oslo, Norway. Published thesis.Google Scholar
Stalsberg, M. 2004. Coarse-clastic turbidite sedimentation: the Neoproterozoic Imsdalen Submarine Fan Complex, Hedmark Basin, South Norway. M.Sc. thesis, Department of Geosciences, University of Oslo, Norway. Published thesis.Google Scholar
Sæther, T. & Nystuen, J. P. 1981. Tectonic framework, stratigraphy, sedimentation and volcanism of the late Precambrian Hedmark Group, Østerdalen, south Norway. Norsk Geologisk Tidsskrift 61, 193211.Google Scholar
Vidal, G. & Nystuen, J. P. 1990. Micropaleontology, depositional environment, and biostratigraphy of the Upper Proterozoic Hedmark Group, southern Norway. American Journal of Science 290–A, 170211.Google Scholar
Supplementary material: File

Lamminen Supplementary Material

Supplementary Material

Download Lamminen Supplementary Material(File)
File 38.4 KB
Supplementary material: File

Lamminen Supplementary Material

Supplementary Material

Download Lamminen Supplementary Material(File)
File 291.8 KB
Supplementary material: File

Lamminen Supplementary Material

Supplementary Material

Download Lamminen Supplementary Material(File)
File 285.2 KB
Supplementary material: File

Lamminen Supplementary Material

Supplementary Material

Download Lamminen Supplementary Material(File)
File 112.6 KB