Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-26T21:46:14.872Z Has data issue: false hasContentIssue false

Metamorphic P–T conditions and retrograde path of high-pressure Barrovian metamorphic zones near Cairn Leuchan, Caledonian orogen, Scotland

Published online by Cambridge University Press:  13 August 2013

K. AOKI*
Affiliation:
Department of Earth Science and Astronomy, The University of Tokyo, Tokyo 153-8902, Japan
B. F. WINDLEY
Affiliation:
Department of Geology, University of Leicester, Leicester LE1 7RH, UK
S. MARUYAMA
Affiliation:
Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551, Japan
S. OMORI
Affiliation:
Department of Liberal Arts, The Open University of Japan, Chiba 261-8586, Japan
*
Author for correspondence: kazumasa@ea.c.u-tokyo.ac.jp

Abstract

The metamorphic P–T conditions and associated relationships of the Barrovian zones near Glen Muick were re-examined by focusing on the petrology and thermodynamics of rocks at Cairn Leuchan, where garnetite lenses and layers occur in surrounding garnet amphibolite in the highest-grade sillimanite zone. The representative mineral assemblages in the garnet-rich lenses and garnet amphibolite are garnet + quartz + clinopyroxene + plagioclase + amphibole ± epidote, and garnet + amphibole + quartz + plagioclase ± clinopyroxene ± epidote, respectively. The chemical compositions of constituent minerals are the same in both garnetite and garnet amphibolite. The metamorphic P–T conditions of these rocks were estimated by thermodynamic calculations. The results show that the rocks underwent high-pressure granulite facies metamorphism at P = c. 1.2–1.4 GPa and T = c. 770–800°C followed by amphibolite facies metamorphism at P = c. 0.5–0.8 GPa and T = c. 580–700°C. Integration of our new results with previously published data suggests that the retrograde P–T trajectory of the highest-grade Barrovian metamorphic rocks marks a temperature decrease during decompression from a crustal depth of the high-pressure granulite facies, which is much deeper than previously considered.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agard, P., Yamato, P., Jolivet, L. & Burov, E. 2009. Exhumation of oceanic blueschists and eclogites in subduction zones: timing and mechanisms. Earth-Science Reviews, 92, 5379.CrossRefGoogle Scholar
Anderson, R. 1985. Sedimentation and tectonics in the Scottish Dalradian. Scottish Journal of Geology 21, 407–36.Google Scholar
Aoki, K., Kitajima, K., Masago, H., Nishizawa, M., Terabayashi, M., Omori, S., Yokoyama, T., Takahata, N., Sano, Y. & Maruyama, S. 2009. Metamorphic P–T–time history of the Sanbagawa belt in central Shikoku, Japan and implications for retrograde metamorphism during exhumation. Lithos 113, 393407.Google Scholar
Atherton, M. P. 1977. The metamorphism of the Dalradian rocks of Scotland. Scottish Journal of Geology 13, 331–70.Google Scholar
Baker, A. J. 1985. Pressures and temperatures of metamorphism in the eastern Dalradian. Journal of the Geological Society, London 142, 137–48.Google Scholar
Baker, A. J. 1986. Eclogitic amphibolites from the Grampian Moines. Mineralogical Magazine 50, 217–21.Google Scholar
Baker, A. J. & Droop, G. T. R. 1983. Grampian metamorphic conditions deduced from mafic granulites and sillimanite–K-feldspar gneisses in the Dalradian of Glen Muick, Scotland. Journal of the Geological Society, London 140, 489–97.CrossRefGoogle Scholar
Barrow, G. 1893. On an intrusion of muscovite-biotite gneiss in the southeastern Highlands of Scotland, and its accompanying metamorphism. Quarterly Journal of the Geological Society 49, 330–58.Google Scholar
Barrow, G. 1912. On the geology of Lower Dee-side and the southern Highland Border. Geological Association of London Proceedings 23, 268–73.Google Scholar
Baxter, F. E., Ague, J. J. & Depaolo, D. J. 2002. Prograde temperature–time evolution in the Barrovian type-locality constrained by Sm/Nd garnet ages from Glen Clova, Scotland. Journal of the Geological Society, London 159, 7182.Google Scholar
Cawood, P. A., Nemchin, A. A., Smith, M. & Loewy, S. 2003. Source of the Dalradian Supergroup constrained by U–Pb dating of detrital zircon and implications for the East Laurentian margin. Journal of the Geological Society, London 160, 231–46.CrossRefGoogle Scholar
Cawood, P. A., Nemchin, A. A., Strachan, R. A., Kinny, P. D. & Loewy, S. 2004. Laurentian provenance and an intracratonic tectonic setting for the Moine Supergroup, Scotland, constrained by detrital zircons from the Loch Eil and Glen Urquhart successions. Journal of the Geological Society, London 161, 861–74.Google Scholar
Cawood, P. A., Nemchin, A. A., Strachan, R., Prave, R. & Krabbendam, M. 2007. Sedimentary basin and detrital zircon record along East Laurentia and Baltica during assembly and breakup of Rodinia. Journal of the Geological Society, London 164, 257–75.Google Scholar
Chew, D. M., Daly, J. S., Page, L. M. & Kennedy, M. J. 2003. Grampian orogenesis and the development of blueschist-facies metamorphism in western Ireland. Journal of the Geological Society, London 160, 911–24.CrossRefGoogle Scholar
Chopin, C. 1984. Coesite and pure pyrope in high-grade blueschists of the western Alps: a first record and some consequences. Contributions to Mineralogy and Petrology 86, 107–18.Google Scholar
Connolly, J. A. D. 2005. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth and Planetary Science Letters 236, 524–41.Google Scholar
Dale, J., Holland, T. & Powell, R. 2000. Hornblende–garnet–plagioclase thermobarometry: a natural assemblage calibration of the thermodynamics of hornblende. Contributions to Mineralogy and Petrology 140, 353–62.CrossRefGoogle Scholar
Dallmeyer, R. D., Strachan, R. A., Rogers, G., Watt, G. R. & Friend, C. R. L. 2001. Dating deformation and cooling in the Caledonian thrust nappes of north Sutherland, Scotland: insights from 40Ar/39Ar and Rb-Sr chronology. Journal of the Geological Society, London 158, 501–12.Google Scholar
Dempster, T. J. 1985. Uplift patterns and orogenic evolution in the Scottish Dalradian. Journal of the Geological Society, London 142, 111–28.Google Scholar
Dewey, J. F. 1969. Evolution of the Appalachian/Caledonian orogen. Nature 222, 124–9.Google Scholar
Dewey, J. F. & Bird, J. M. 1970. Mountain belts and the new global tectonics. Journal of Geophysical Research 75, 2625–47.Google Scholar
Elias, E. M., Macintyre, R. M. & Leake, B. E. 1988. The cooling history of Connemara, western Ireland, from K-Ar and Rb-Sr age studies. Journal of the Geological Society, London 145, 649–60.Google Scholar
Ernst, W. G. & Liou, J. G. 2008. High- and ultrahigh-pressure metamorphism: past results and future prospects. American Mineralogist 93, 1771–86.Google Scholar
Fettes, D. J., Long, C. B., Bevins, R. E., Max, M. D., Oliver, G. J. H., Primmer, T. J., Thomas, L. J. & Yardley, B. W. D. 1985. Grade and time of metamorphism in the Caledonide orogen of Britain and Ireland. Geological Society of London, Memoirs 9, 4153.Google Scholar
Friend, C. R. L., Jones, K. A. & Burns, I. M. 2000. New high-pressure granulite event in the Moine Supergroup, northern Scotland: implications for Taconic (early Caledonian) crustal evolution. Geology 28, 543–6.Google Scholar
Gray, J. R. & Yardley, B. W. D. 1979. A Caledonian blueschist from the Irish Dalradian. Nature 278, 736–7.Google Scholar
Hirata, T. & Kon, Y. 2008. Evaluation of the analytical capability of NIR femtosecond laser ablation-inductively coupled plasma mass spectrometry. Analytical Sciences 24, 345–53.Google Scholar
Holland, T. J. B., Baker, J. & Powell, R. 1998. Mixing properties and activity-composition and relationships of chlorites in the system MgO–FeO–Al2O3–SiO2–H2O. European Journal of Mineralogy 10, 395406.Google Scholar
Holland, T. & Powell, R. 1996. Thermodynamics of order-disorder in minerals: II. symmetric formalism applied to solid solutions. American Mineralogist 81, 1425–37.Google Scholar
Holland, T. J. B. & Powell, R. 1998. An internally-consistent thermodynamic dataset for phases of petrological interest. Journal of Metamorphic Geology 16, 309–44.Google Scholar
Hoskin, P. W. O & Black, L. P. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology 18, 423–39.Google Scholar
Hutchison, A. R. & Oliver, G. J. H. 1998. Garnet provenance studies, juxtaposition of Laurentian marginal terranes and timing of the Grampian Orogeny in Scotland. Journal of the Geological Society, London 155, 541–50.Google Scholar
Iizuka, T. & Hirata, T. 2004. Simultaneous determinations of U-Pb age and REE abundance for zircons using ArF excimer laser ablation–ICPMS. Geochemical Journal 38, 229–41.Google Scholar
Kaneko, Y., Katayama, I., Yamamoto, H., Misawa, K., Ishikawa, M., Rehman, H. U., Kausar, A. B. & Shiraishi, K. 2003. Timing of Himalayan ultrahigh-pressure metamorphism: sinking rate and subduction angle of the Indian continental crust beneath Asia. Journal of Metamorphic Geology 21, 589–99.Google Scholar
Katayama, I., Zayachkovsky, A. A. & Maruyama, S. 2000. Prograde pressure–temperature records from inclusions in zircons from ultrahigh-pressure–high-pressure rocks of the Kokchetav Massif, northern Kazakhstan. The Island Arc 9, 417–27.Google Scholar
Kawai, T., Windley, B. F., Terabayashi, M., Yamamoto, H., Maruyama, S. & Isozaki, Y. 2006. Mineral isograds and metamorphic zones of the Anglesey blueschist belt, UK: implications for the metamorphic development of a Neoproterozoic subduction-accretion complex. Journal of Metamorphic Geology 24, 591602.Google Scholar
Kennedy, W. Q. 1948. On the significance of thermal structure in the Scottish Highlands. Geological Magazine 85, 229–34.Google Scholar
Kretz, R. 1983. Symbols for rock-forming minerals. American Mineralogist 68, 277–9.Google Scholar
Leake, B. F., Woolley, A. R., Arps, C. E. S., Birch, W. D., Gilbert, M. C., Grice, J. D., Hawthorne, F. C., Kato, A., Kisch, H. J., Krivovichev, V. G., Linthout, K., Laird, J., Mandarino, J. A., Maresch, W. V., Nickel, E. H., Rock, N. M. S., Schumacher, J. C., Smith, D. C., Stephenson, N. C. N., Ungaretti, L., Whittaker, E. J. W. & Youzhi, G. 1997. Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, commission on new minerals and mineral names. American Mineralogist 82, 1019–37.Google Scholar
Liou, J. G., Tsujimori, T., Zhang, R. Y., Katayama, I. & Maruyama, S. 2004. Global UHP metamorphism and continental subduction/collision: the Himalayan model. International Geology Review 46, 127.Google Scholar
Macdonald, R. & Fettes, D. J. 2007. The tectonomagmatic evolution of Scotland. Transactions of Royal Society of Edinburgh: Earth Sciences 97, 213–95.Google Scholar
Maruyama, S. 1997. Pacific-type orogeny revisited: Miyashiro-type orogeny proposed. The Island Arc 6, 91120.Google Scholar
Maruyama, S., Liou, J. G. & Terabayashi, M. 1996. Blueschists and eclogites of the world and their exhumation. International Geology Review 38, 485594.Google Scholar
Maruyama, S., Masago, H., Katayama, I., Iwase, Y., Toriumi, M., Omori, S. & Aoki, K. 2010. A new perspective on metamorphism and metamorphic belts. Gondwana Research 18, 106–37.Google Scholar
Maruyama, S. & Parkinson, C. D. 2000. Overview of the geology, petrology and tectonic framework of the high-pressure–ultrahigh-pressure metamorphic belt of the Kokchetav Massif, Kazakhstan. The Island Arc 9, 439–55.Google Scholar
Matsuda, T. & Ueda, S. 1971. On the Pacific-type orogeny and its model: exhumation of the paired metamorphic belts concept and possible origin of marginal seas. Tectonophysics 11, 527.Google Scholar
McKerrow, W. S., Niocaill, C. M., Ahlberg, P. E., Clayton, G., Cleal, C. J. & Eagar, R. M. C. 2000. The Late Palaeozoic relations between Gondwana and Laurussia. In Orogenic Processes: Quantification and Modelling in the Variscan Belt (eds Franke, W., Haak, V., Oncken, O. & Tanner, D.), pp. 920. Geological Society of London, Special Publication no. 179.Google Scholar
Miyashiro, A. 1973. Metamorphism and Metamorphic Belts. London: Allen and Unwin, 492 pp.Google Scholar
Neuendorf, K. K. E., Mehl, J. P. & Jackson, J. A. 2005. Glossary of Geology (5th edition). Alexandria, Virginia: American Geological Institute, 779 pp.Google Scholar
Newton, R. C., Charlu, T. V. & Kleppa, O. L. 1980. Thermochemistry of the high structural state plagioclases. Geochimica et Cosmochimica Acta 44, 933–41.Google Scholar
Ogasawara, Y. & Aoki, K. 2005. The role of fluid for diamond-free UHP dolomitic marble from the Kokchetav Massif. International Geology Review 47, 1178–93.CrossRefGoogle Scholar
Oliver, G. J. H. 2001. Reconstruction of the Grampian episode in Scotland: its place in the Caledonian orogeny. Tectonophysics 332, 2349.CrossRefGoogle Scholar
Oliver, G. J. H., Wilde, S. A. & Wan, Y. 2008. Geochronology and geodynamics of Scottish granitoids from the late Neoproterozoic break-up of Rodinia to Palaeozoic collision. Journal of the Geological Society, London 165, 661–74.Google Scholar
Open University. 2003. Mountain Building in Scotland. The Open University. http://openlearn.open.ac.uk/course/view.php?id=3480.Google Scholar
Phillips, E. R., Highton, A. J., Hyslop, E. K. & Smith, M. 1999. The timing and P-T conditions of regional metamorphism in the Central Highlands, Scotland. Journal of the Geological Society, London 156, 1175–93.Google Scholar
Powell, R. & Holland, T. 1999. Relating formulations of the thermodynamics of mineral solid solutions: activity modeling of pyroxenes, amphiboles, and micas. American Mineralogist 84, 114.Google Scholar
Sivaprakash, C. 1982. Geothermometry and geobarometry of Dalradian metapelites and metabasites from the Central Scottish Highlands. Scottish Journal of Geology 18, 109–24.Google Scholar
Smith, D. C. 1984. Coesite in clinopyroxene in the Caledonides and its implications of geodynamics. Nature 310, 641–4.Google Scholar
Strachan, R. A., Harris, A. L., Fettes, D. J. & Smith, M. 2002. The Highland and Grampian terranes. In The Geology of Scotland (ed. Trewin, N. H.), pp. 81148. London: Geological Society of London.Google Scholar
Tanner, P. W. G. & Pringle, M. 1999. Testing for a terrane boundary within Neoproterozoic (Dalradian) to Cambrian siliceous turbidites at Callander, Perthshire, Scotland. Journal of the Geological Society, London 156, 1205–16.Google Scholar
Vorhies, S. & Ague, J. J. 2011. Pressure–temperature evolution and thermal regimes in the Barrovian zones, Scotland. Journal of the Geological Society, London 168, 1147–66.Google Scholar
Winchester, J. A. 1974. The zonal pattern of regional metamorphism in the Scottish Caledonides. Journal of the Geological Society, London 130, 509–24.Google Scholar
Yardley, B. W. D., Barber, J. P., Gray, J. R. & Taylor, W. E. G. 1987. The metamorphism of the Dalradian rocks of Western Ireland and its relation to tectonic setting [and discussion]. Philosophical Transactions of the Royal Society, London A 321, 243–70.Google Scholar
Zenk, M. & Schulz, B. 2004. Zoned Ca-amphiboles and related P-T evolution in metabasites from classical Barrovian metamorphic zones in Scotland. Mineralogical Magazine 68, 769–86.Google Scholar
Zhang, R. Y., Liou, J. G. & Ernst, W. G. 1995. Ultrahigh-pressure metamorphism and decompressional P–T paths of eclogites and country rocks from Weihai, eastern China. The Island Arc 4, 293309.Google Scholar