Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T08:52:01.780Z Has data issue: false hasContentIssue false

Self-destabilising loop of a low-speed water jet emanating from an orifice in microgravity

Published online by Cambridge University Press:  16 May 2016

Akira Umemura*
Affiliation:
Department of Aerospace Engineering, Nagoya University, Nagoya 464-8603, Japan
*
Email address for correspondence: akira@nuae.nagoya-u.ac.jp

Abstract

A one-dimensional global mode analysis is conducted for low-speed water jets emanating from a circular orifice in microgravity, in which the observed spontaneous convective instability causes almost periodic jet disintegrations at a fixed location for each jet-issue speed that exceeds a certain threshold. The inviscid spatial linear stability analysis identifies four wave modes excitable at the frequency: the Plateau–Rayleigh (PR) unstable wave, its complex conjugate and two neutral waves which may transfer energy upstream. Their linear combination satisfying the orifice exit condition may describe the synchronised reproduction of a PR unstable wave from each neutral wave at the orifice exit. On the other hand, a weakly nonlinear analysis shows that the growth of the nonlinear PR unstable wave produces the two neutral waves near the orifice. Thus, the same PR unstable wave can be reproduced on a newly issued liquid surface owing to the neutral waves produced by its own nonlinear growth. This self-destabilising loop, dominantly operating for the most unstable PR wave, determines the initial PR unstable wave amplitude and, consequently, the breakup length as a function of jet-issue speed. The predicted initial amplitude of the PR unstable wave is in reasonably good agreement with the value calculated from the average breakup length measured in our microgravity experiments. It is found that that the loop consists mainly of the downstream- and upstream-moving neutral waves at relatively high and low jet speeds, respectively. The stability of the self-destabilising loop is also discussed.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present status: Emeritus Professor.

References

Ambravaneswaran, B., Subramani, H. I., Phillops, S. D. & Basaran, O. A. 2004 Dripping-jetting transition in a dripping faucet. Phys. Rev. Lett. 93, 034501.Google Scholar
Ashgriz, N. & Mashayek, F. 1995 Temporal analysis of capillary jet breakup. J. Fluid Mech. 291, 163190.CrossRefGoogle Scholar
Batchelor, G. K. 1958 Collected Works of G. I. Taylor. Cambridge University Press.Google Scholar
Bogy, D. B. 1979a Break-up of a liquid jet: second perturbation solution for one-dimensional Cosserat-theory. IBM J. Res. Dev. 23, 8792.Google Scholar
Bogy, D. B. 1979b Break-up of a liquid jet: third perturbation solution. Phys. Fluids 22, 224230.CrossRefGoogle Scholar
Briggs, R. J. 1964 Electron Stream Interaction with Plasmas. MIT Press.Google Scholar
Chaudhary, K. C. & Redekopp, L. G. 1980 The nonlinear capillary instability of a liquid jet. Part 1. Theory. J. Fluid Mech. 96, 257274.Google Scholar
Chomaz, J. M. 2005 Instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37, 357392.Google Scholar
Clanet, C & Lasheras, J. C. 1999 Transition from dripping to jetting. J. Fluid Mech. 383, 307326.Google Scholar
Eggers, J. 1997 Nonlinear dynamics and breakup of free surface flows. Rev. Mod. Phys. 69, 865930.Google Scholar
Eggers, J. & Dupont, T. F. 1994 Drop formation in a one-dimensional approximation of the Navier–Stokes equation. J. Fluid Mech. 262, 205221.Google Scholar
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71, 036601.Google Scholar
Guerrero, J., Gonzalez, H. & Garcia, F. J. 2012 Spatial modes of capillary jets, with application to surface stimulation. J. Fluid Mech. 702, 354377.Google Scholar
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473537.CrossRefGoogle Scholar
Keller, J. B., Ubinow, S. L. & Tu, Y. O. 1973 Spatial instability of a jet. Phys. Fluids 16, 20522055.Google Scholar
Lafrance, P. 1975 Nonlinear breakup of a laminar liquid jet. Phys. Fluids 18, 428432.Google Scholar
Landau, L. D. 1949 On the vibrations of the electronic plasma. J. Phys. USSR 10, 445460.Google Scholar
Le Dizes, S. 1997 Global modes in falling capillary jets. Eur. J. Mech. (B/Fluids) 16, 166182.Google Scholar
Lee, H. C. 1974 Drop formation in a liquid jet. IBM J. Res. Dev. 18, 364369.Google Scholar
Leib, S. J. & Goldstein, M. E. 1986 The generation of capillary instabilities on a liquid jet. J. Fluid Mech. 168, 479500.Google Scholar
Lin, S. P. 2003 Breakup of Liquid Sheets and Jets. Cambridge University Press.CrossRefGoogle Scholar
Lin, S. P. & Lian, Z. W. 1989 Absolute instability of a liquid jet in a gas. Phys. Fluids A1, 490493.Google Scholar
Lin, S. P. & Reitz, R. D. 1998 Drop and spray formation from a liquid jet. Annu. Rev. Fluid Mech. 30, 85105.Google Scholar
Marmottan, P. & Villermaux, E. 2004 On spray formation. J. Fluid Mech. 498, 73111.Google Scholar
McCarthy, M. J. & Molloy, N. A. 1974 Review of stability of liquid jets and influence of nozzle design. Chem. Engng J. 7, 120.Google Scholar
Monkewitz, P. A. 1990 The role of absolute and convective instability in predicting the behavior of fluid systems. Eur. J. Mech. (B/Fluids) 9, 395413.Google Scholar
Monkewitz, P. A., Davis, J., Bojorquez, B. & Yu, M. H. 1988 The breakup of a liquid jet at high Weber number. Bull. Am. Phys. Soc. 33, 2273.Google Scholar
Nayfeh, A. H. 1970 Nonlinear stability of a liquid jet. Phys. Fluids 13, 841847.CrossRefGoogle Scholar
Nicolas, J. A. & Vega, J. M. 1996 Weakly nonlinear oscillations of nearly inviscid axisymmetric liquid bridges. J. Fluid Mech. 328, 95128.Google Scholar
O’Donnell, B., Chen, J. N. & Lin, S. P. 2001 Transition from convective to absolute instability in a liquid jet. Phys. Fluids 13, 27322734.Google Scholar
Osaka, J., Suzuki, S., Suzuki, Y. & Umemura, A. 2011 Microgravity experiments on ISS in order to examine a new atomization theory discovered through normal gravity and microgravity environments. J. Phys.: Conf. Ser. 327, 012042.Google Scholar
Phinney, R. E. & Humphries, W. 1973 Stability of a laminar jet of viscous liquid-influence of nozzle shape. AIChE J. 19, 655657.CrossRefGoogle Scholar
Pimbley, W. T. 1976 Drop formation from a liquid jet; a linear one-dimensional analysis considered as a boundary value problem. IBM J. Res. Dev. 21, 148156.Google Scholar
Pimbley, W. T. & Lee, H. C. 1977 Satellite droplet formation in a liquid jet. IBM J. Res. Dev. 21, 2130.CrossRefGoogle Scholar
Plateau, J. 1873 Statique Experimentale et Theorique des Liquides Soumis aux Seules Forces Moleculaires, Vol 2. Gauthier-Villars.Google Scholar
Rayleigh, L. 1878 On the instability of jets. Proc. Lond. Math. Soc. 10, 413.CrossRefGoogle Scholar
Rubio-Rubio, M., Sevilla, A. & Gordillo, J. M. 2013 On the thinnest steady threads obtained by gravitational stretching of capillary jets. J. Fluid Mech. 729, 471483.Google Scholar
Sauter, U. S. & Buggisch, H. W. 2005 Stability of initially slow viscous jets driven by gravity. J. Fluid Mech. 533, 237257.Google Scholar
Shinjo, J. & Umemura, A. 2010 Simulation of liquid jet primary breakup: dynamics of ligament and droplet formation. Intl J. Multiphase Flow 36, 513532.Google Scholar
Shinjo, J. & Umemura, A. 2010 Surface instability and primary atomization characteristics of straight liquid jet sprays. Intl J. Multiphase Flow 37, 12941304.Google Scholar
Schulkes, R. M. S. M. 1993 Dynamics of liquid jets revisited. J. Fluid Mech. 250, 635650.CrossRefGoogle Scholar
Schulkes, R. M. S. M. 1996 The contraction of liquid filaments. J. Fluid Mech. 309, 277300.CrossRefGoogle Scholar
Sterling, A. M. & Sleicher, A. A. 1975 The instability of capillary jets. J. Fluid Mech. 68, 477495.Google Scholar
Stone, H. A. & Leal, L. G. 1989 Relaxation and breakup of an initially extended drop in an otherwise quiescent fluid. J. Fluid Mech. 198, 399427.Google Scholar
Taylor, G. I. 1959 The dynamics of thin sheets of fluid. III Disintegration of fluid sheets. Proc. R. Soc. Lond. A 253, 313321.Google Scholar
Umemura, A. 2011 Self-destabilizing mechanism of a laminar inviscid liquid jet issuing from a circular nozzle. Phys. Rev. E 83, 046307.Google Scholar
Umemura, A. 2014 Model for the initiation of atomization in a high-speed laminar liquid jet. J. Fluid Mech. 757, 665700.Google Scholar
Umemura, A., Kawanabe, S., Suzuki, S. & Osaka, J. 2011 Two-valued breakup length of a water jet issuing from a finite-length nozzle under normal gravity. Phys. Rev. E 84, 036309.Google Scholar
Umemura, A. & Osaka, J. 2014 Self-destabilizing loop observed in a jetting-to-dripping transition. J. Fluid Mech. 752, 184218.CrossRefGoogle Scholar
Vihinen, I., Honohan, A. M. & Lin, S. P. 1997 Image of absolute instability in a liquid jet. Phys. Fluids 9, 31173119.Google Scholar
Wang, D. P. 1968 Finite amplitude effect on the stability of a jet of circular cross-section. J. Fluid Mech. 34, 299313.Google Scholar
Weber, C. 1931 Zum Zerfall eines Fluessingkeitsstrahles. Z. Angew. Math. Mech. 11, 136145.Google Scholar
Yuen, M. C. 1968 Non-linear capillary instability of a liquid jet. J. Fluid Mech. 33, 151163.Google Scholar