Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-27T00:49:29.427Z Has data issue: false hasContentIssue false

Mixing efficiency in stratified turbulence

Published online by Cambridge University Press:  05 April 2016

A. Maffioli*
Affiliation:
Linné Flow Centre, Department of Mechanics, KTH, 10044 Stockholm, Sweden
G. Brethouwer
Affiliation:
Linné Flow Centre, Department of Mechanics, KTH, 10044 Stockholm, Sweden
E. Lindborg
Affiliation:
Linné Flow Centre, Department of Mechanics, KTH, 10044 Stockholm, Sweden
*
Email address for correspondence: maffioli@mech.kth.se

Abstract

We consider mixing of the density field in stratified turbulence and argue that, at sufficiently high Reynolds numbers, stationary turbulence will have a mixing efficiency and closely related mixing coefficient described solely by the turbulent Froude number $Fr={\it\epsilon}_{k}/(Nu^{2})$, where ${\it\epsilon}_{k}$ is the kinetic energy dissipation, $u$ is a turbulent horizontal velocity scale and $N$ is the Brunt–Väisälä frequency. For $Fr\gg 1$, in the limit of weakly stratified turbulence, we show through a simple scaling analysis that the mixing coefficient scales as ${\it\Gamma}\propto Fr^{-2}$, where ${\it\Gamma}={\it\epsilon}_{p}/{\it\epsilon}_{k}$ and ${\it\epsilon}_{p}$ is the potential energy dissipation. In the opposite limit of strongly stratified turbulence with $Fr\ll 1$, we argue that ${\it\Gamma}$ should reach a constant value of order unity. We carry out direct numerical simulations of forced stratified turbulence across a range of $Fr$ and confirm that at high $Fr$, ${\it\Gamma}\propto Fr^{-2}$, while at low $Fr$ it approaches a constant value close to ${\it\Gamma}=0.33$. The parametrization of ${\it\Gamma}$ based on $Re_{b}$ due to Shih et al. (J. Fluid Mech., vol. 525, 2005, pp. 193–214) can be reinterpreted in this light because the observed variation of ${\it\Gamma}$ in their study as well as in datasets from recent oceanic and atmospheric measurements occurs at a Froude number of order unity, close to the transition value $Fr=0.3$ found in our simulations.

Type
Rapids
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Augier, P., Billant, P. & Chomaz, J.-M. 2015 Stratified turbulence forced with columnar dipoles: numerical study. J. Fluid Mech. 769, 403443.Google Scholar
Barry, M. E., Ivey, G. N., Winters, K. B. & Imberger, J. 2001 Measurements of diapycnal diffusivities in stratified fluids. J. Fluid Mech. 442, 267291.Google Scholar
Bartello, P. & Tobias, S. M. 2013 Sensitivity of stratified turbulence to the buoyancy Reynolds number. J. Fluid Mech. 725, 122.CrossRefGoogle Scholar
Billant, P. & Chomaz, J.-M. 2001 Self-similarity of strongly stratified inviscid flows. Phys. Fluids 13 (6), 16451651.Google Scholar
Brethouwer, G., Billant, P., Lindborg, E. & Chomaz, J.-M. 2007 Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech. 585, 343368.CrossRefGoogle Scholar
de Bruyn Kops, S. M. 2015 Classical scaling and intermittency in strongly stratified Boussinesq turbulence. J. Fluid Mech. 775, 436463.Google Scholar
Davis, K. A. & Moninsmith, S. G. 2011 The modification of bottom boundary layer turbulence and mixing by internal waves shoaling on a barrier reef. J. Phys. Oceanogr. 41, 22232241.Google Scholar
Donzis, D. A., Sreenivasan, K. R. & Yeung, P. K. 2005 Scalar dissipation rate and dissipative anomaly in isotropic turbulence. J. Fluid Mech. 532, 199216.CrossRefGoogle Scholar
Holford, J. M. & Linden, P. F. 1999 Turbulent mixing in a stratified fluid. Dyn. Atmos. Oceans 30, 173198.Google Scholar
Ivey, G. N., Winters, K. B. & Koseff, J. R. 2008 Density stratification, turbulence, but how much mixing? Annu. Rev. Fluid Mech. 40, 169184.CrossRefGoogle Scholar
Kato, H. & Philipps, O. M. 1969 On the penetration of a turbulent layer into stratified fluid. J. Fluid Mech. 37 (4), 643655.Google Scholar
Lindborg, E. 2006 The energy cascade in a strongly stratified fluid. J. Fluid Mech. 550, 207242.CrossRefGoogle Scholar
Lindborg, E. & Brethouwer, G. 2008 Vertical dispersion by stratified turbulence. J. Fluid Mech. 614, 303314.CrossRefGoogle Scholar
Lozovatsky, I. D. & Fernando, H. J. S. 2013 Mixing efficiency in natural flows. Phil. Trans. R. Soc. Lond. A 371 (1982), doi:10.1098/rsta.2012.0213.Google Scholar
Maffioli, A. & Davidson, P. A. 2015 Dynamics of stratified turbulence decaying from a high buoyancy Reynolds number. J. Fluid Mech. 786, 210233.Google Scholar
Mater, B. D. & Venayagamoorthy, S. K. 2014 The quest for an unambiguous parameterization of mixing efficiency in stably stratified geophysical flows. Geophys. Res. Lett. 41, 46464653.Google Scholar
Monti, P., Fernando, H. J. S., Princevac, M., Chan, W. C., Kowalewski, T. A. & Pardyjak, E. R. 2002 Observations of flow and turbulence in the nocturnal boundary layer over a slope. J. Atmos. Sci. 59 (17), 25132534.2.0.CO;2>CrossRefGoogle Scholar
Oglethorpe, R. L. F., Caulfield, C. P. & Woods, A. W. 2013 Spontaneous layering in stratified turbulent Taylor–Couette flow. J. Fluid Mech. 721, R3.Google Scholar
Olsthoorn, J. & Dalziel, S. B. 2015 Vortex-ring-induced stratified mixing. J. Fluid Mech. 781, 113126.Google Scholar
Osborn, T. R. 1980 Estimates of the local rates of vertical diffusion from dissipation measurements. J. Phys. Oceanogr. 10, 8389.Google Scholar
Osborn, T. R. & Cox, C. S. 1972 Oceanic fine structure. Geophys. Fluid Dyn. 3, 321345.CrossRefGoogle Scholar
Park, J.-G., Whitehead, J. A. & Gnanadeskian, A. 1994 Turbulent mixing in stratified fluids: layer formation and energetics. J. Fluid Mech. 279, 279311.Google Scholar
Riley, J. J. & de Bruyn Kops, S. M. 2003 Dynamics of turbulence strongly influenced by buoyancy. Phys. Fluids 15 (7), 20472059.Google Scholar
Riley, J. J. & Lelong, M.-P. 2000 Fluid motions in the presence of strong stable stratification. Annu. Rev. Fluid Mech. 32, 613657.CrossRefGoogle Scholar
Rogallo, R. S.1981 Numerical experiments in homogeneous turbulence. NASA Tech. Memorandum 81315. NASA Ames Research Center.Google Scholar
Salehipour, H. & Peltier, W. R. 2015 Diapycnal diffusivity, turbulent Prandtl number and mixing efficiency in Boussinesq stratified turbulence. J. Fluid Mech. 775, 464500.Google Scholar
Shih, L. H., Koseff, J. R., Ivey, G. N. & Ferziger, J. H. 2005 Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations. J. Fluid Mech. 525, 193214.Google Scholar
Smyth, W. D. & Moum, J. N. 2000 Length scales of turbulence in stably stratified mixing layers. Phys. Fluids 12 (6), 13271342.Google Scholar
Smyth, W. D., Nash, J. D. & Moum, J. N. 2005 Differential diffusion in breaking Kelvin–Helmholtz Billows. J. Phys. Oceanogr. 35, 10041022.Google Scholar
Taylor, G. I. 1935 Statistical theory of turbulence. Proc. R. Soc. Lond. A 151, 421478.Google Scholar
Turner, J. S. 1968 The influence of molecular diffusivity on turbulent entrainment across a density interface. J. Fluid Mech. 33 (4), 639656.Google Scholar
Turner, J. S. 1973 Buoyancy Effects in Fluids. Cambridge University Press.Google Scholar
Waite, M. L. 2011 Stratified turbulence at the buoyancy scale. Phys. Fluids 23 (6), 066602.CrossRefGoogle Scholar
Waite, M. L. & Bartello, P. 2004 Stratified turbulence dominated by vortical motion. J. Fluid Mech. 517, 281308.Google Scholar
Walter, R. K., Squibb, M. E., Woodson, C. B., Koseff, J. R. & Monismith, S. G. 2014 Stratified turbulence in the nearshore coastal ocean: dynamics and evolution in the presence of internal bores. J. Geophys. Res. 119, 87098730.Google Scholar
Wells, M., Cenedese, C. & Caulfield, C. P. 2010 The relationship between flux coefficient and entrainment ratio in density currents. J. Phys. Oceanogr. 40, 27132727.Google Scholar