Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-27T20:15:07.327Z Has data issue: false hasContentIssue false

Inertial instability of intense stratified anticyclones. Part 1. Generalized stability criterion

Published online by Cambridge University Press:  06 September 2013

Ayah Lazar*
Affiliation:
Department of Geophysics and Planetary Science, Tel Aviv University, Tel Aviv, Tel Aviv 69978, Israel Laboratoire de Météorologie Dynamique, École Polytechnique, 91128 Palaiseau CEDEX, France
A. Stegner
Affiliation:
Laboratoire de Météorologie Dynamique, École Polytechnique, 91128 Palaiseau CEDEX, France
E. Heifetz
Affiliation:
Department of Geophysics and Planetary Science, Tel Aviv University, Tel Aviv, Tel Aviv 69978, Israel Department of Meteorology, Stockholm University, SE-106 91 Stockholm, Sweden
*
Email address for correspondence: ayah@caltech.edu

Abstract

The stability of axisymmetric vortices to inertial perturbations is investigated by means of linear stability analysis, taking into account stratification, vertical eddy viscosity, as well as finite depth of the flow. We consider different types of circular barotropic vortices in a linearly stratified shallow layer confined with rigid lids. For the simplest case of the Rankine vortex we develop an asymptotic analytic dispersion relation and a marginal stability criterion, which compares well with numerical results. This is a further generalization to the well-known generalized Rayleigh criterion, which is only valid for non-dissipative and non-stratified eddies. Unlike the Rayleigh criterion, it predicts that intense anticyclones may be stable even with a core region of negative absolute vorticity, and that the dissipation and stratification work together to stabilize the flow. Numerical analysis reveals that the stability diagrams for various types of vortices are almost identical in the Rossby, Burger and Ekman parameter space. This allows extension of our analytical solutions for the Rankine vortex to a wide variety of vortices. Furthermore, we show that a more suitable parameter for the intensity of the vortex is the vortex Rossby number, while for the inviscid case it is the local normalized vorticity. These predictions are in agreement with laboratory experiments presented in part 2 (J. Fluid Mech., vol. 732, 2013, pp. 485–509).

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afanasyev, Y. D. 2002 Experiments on instability of columnar vortex pairs in rotating fluid. Geophys. Astrophys. Fluid Dyn. 96 (1), 3148.Google Scholar
Afanasyev, Y. D. & Peltier, W. R. 1998 Three-dimensional instability of anticyclonic swirling flow in rotating fluid: laboratory experiments and related theoretical predictions. Phys. Fluids 10 (12), 31943202.Google Scholar
Bartello, P., Métais, O. & Lesieur, M. 1994 Coherent structures in rotating three-dimensional turbulence. J. Fluid Mech. 273 (1), 129.Google Scholar
Billant, P. & Gallaire, F. 2005 Generalized Rayleigh criterion for non-axisymmetric centrifugal instabilities. J. Fluid Mech. 542, 365379.Google Scholar
Carnevale, G. F., Briscolin, M., Kloosterziel, R. C. & Vallis, G. K. 1997 Three-dimensionally perturbed vortex tubes in a rotating flow. J. Fluid Mech. 341 (1), 127163.Google Scholar
Carnevale, G. F., Kloosterziel, R. C., Orlandi, P. & van Sommeren, D. D. J. a. 2011 Predicting the aftermath of vortex breakup in rotating flow. J. Fluid Mech. 669, 90119.CrossRefGoogle Scholar
Charney, J. G. 1973 Planetary fluid dynamics. In Dynamic Meteorology (ed. Morel, P.), pp. 97351. Springer.CrossRefGoogle Scholar
Chavanne, C., Flament, P. & Gurgel, K.-W. 2010 Interactions between a submesoscale anticyclonic vortex and a front. J. Phys. Oceanogr. 40 (8), 18021818.Google Scholar
Dunster, T. M. 1990 Bessel functions of purely imaginary order, with an application to second-order linear differential equations having a large parameter. SIAM J. Math. Anal. 21 (4), 9951018.Google Scholar
Flierl, G. R. 1988 On the instability of geostrophic vortices. J. Fluid Mech. 197, 349388.Google Scholar
Gallaire, F. & Chomaz, J.-M. 2003 Three-dimensional instability of isolated vortices. Phys. Fluids 15 (8), 21132126.Google Scholar
Griffiths, S. D. 2008 The limiting form of inertial instability in geophysical flows. J. Fluid Mech. 605, 115143.Google Scholar
Haine, T. W. N. & Marshall, J 1998 Gravitational, symmetric, and baroclinic instability of the ocean mixed layer. J. Phys. Oceanogr. 28, 634658.Google Scholar
Holton, J. R. 2004 An Introduction to Dynamic Meteorology. Academic Press.Google Scholar
Johnson, J. A. 1963 The stability of shearing motion in a rotating fluid. J. Fluid Mech 17 (3), 337352.Google Scholar
Kloosterziel, R. C. 2010 Viscous symmetric stability of circular flows. J. Fluid Mech. 652, 171193.Google Scholar
Kloosterziel, R. C. & Carnevale, G. F. 2008 Vertical scale selection in inertial instability. J. Fluid Mech. 594 (1), 249269.Google Scholar
Kloosterziel, R. C., Carnevale, G. F. & Orlandi, P. 2007 Inertial instability in rotating and stratified fluids: barotropic vortices. J. Fluid Mech. 583, 379412.Google Scholar
Kloosterziel, R. C. & van Heijst, G. J. F. 1991 An experimental study of unstable barotropic vortices in a rotating fluid. J. Fluid Mech. 223, 124.Google Scholar
Lazar, A., Stegner, A., Caldeira, R., Dong, C., Didelle, H. & Viboud, S. 2013 Inertial instability of intense stratified anticyclones. Part 2. Laboratory experiments. J. Fluid Mech. 732, 485509.CrossRefGoogle Scholar
Leblanc, S. & Cambon, C. 1997 On the three-dimensional instabilities of plane flows subjected to Coriolis force. Phys. Fluids 9 (5), 13071316.Google Scholar
Mutabazi, I., Normand, C. & Wesfreid, J. E. 1992 Gap size effects on centrifugally and rotationally driven instabilities. Phys. Fluids A 4, 11991205.Google Scholar
Ooyama, K. 1966 On the stability of the baroclinic circular vortex: a sufficient criterion for instability. J. Atmos. Sci. 23, 4353.Google Scholar
Orlandi, P. & Carnevale, G. F. 1999 Evolution of isolated vortices in a rotating fluid of finite depth. J. Fluid Mech. 381, 239269.Google Scholar
Plougonven, R. & Zeitlin, V. 2009 Nonlinear development of inertial instability in a barotropic shear. Phys. Fluids 21 (10), 106601.CrossRefGoogle Scholar
Sawyer, J. S. 1947 Notes on the theory of tropical cyclones. Q. J. R. Meteorol. Soc. 73 (315/316), 101126.Google Scholar
Sipp, D. & Jacquin, L. 2000 Three-dimensional centrifugal-type instabilities of two dimensional flows in rotating systems. Phys. Fluids 12 (7), 17401748.Google Scholar
Smyth, W. D. & McWilliams, J. C. 1998 Instability of an axisymmetric vortex in a stably stratified, rotating environment. Theor. Comput. Fluid Dyn. 11 (3/4), 305322.CrossRefGoogle Scholar
Stevens, D. E. & Ciesielski, P. E. 1986 Inertial instability of horizontally sheared flow away from the equator. J. Atmos. Sci. 43 (23), 28452856.2.0.CO;2>CrossRefGoogle Scholar
Stone, P. H. 1966 On non-geostrophic baroclinic stability. J. Atmos. Sci. 23, 390400.Google Scholar
Taylor, J. R. & Ferrari, R. 2009 On the equilibration of a symmetrically unstable front via a secondary shear instability. J. Fluid Mech. 622, 103113.Google Scholar
Teinturier, S., Stegner, A., Didelle, H. & Viboud, S. 2010 Small-scale instabilities of an island wake flow in a rotating shallow-water layer. Dyn. Atmos. Oceans 49, 124.Google Scholar
Yanase, S., Flores, C., Métais, O. & Riley, J. J. 1993 Rotating free-shear flows. Part 1. Linear stability analysis. Phys. Fluids A 5, 27252737.Google Scholar