Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-18T03:11:31.376Z Has data issue: false hasContentIssue false

Lift generation with optimal elastic pitching for a flapping plate

Published online by Cambridge University Press:  07 February 2013

Diing-wen Peng*
Affiliation:
Department of Mechanical and Aerospace Engineering, University at Buffalo, 318 Jarvis Hall, Buffalo, NY 14260-4400, USA
Michele Milano
Affiliation:
Department of Mechanical and Aerospace Engineering, University at Buffalo, 318 Jarvis Hall, Buffalo, NY 14260-4400, USA
*
Email address for correspondence: dpeng2@buffalo.edu

Abstract

The lift-generating capabilities of a translating and passively pitching rectangular plate are assessed experimentally. The plate pitch dynamics are generated by a rotational spring, and a genetic algorithm isolates a set of spring parameters maximizing the average lift. Our experiments identified a range of parameters that produce kinematic trajectories associated with optimal lift production. The stroke length and the dynamic response of the spring at the driving frequency are revealed to play crucial roles in the generation of such trajectories. Measurements taken with digital particle image velocimetry are used to analyse the results.

Type
Rapids
Copyright
©2013 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergou, A. J., Xu, S. & Wang, Z. J. 2007 Passive wing pitch reversal in insect flight. J. Fluid Mech. 591, 321337.CrossRefGoogle Scholar
Birch, J. M. & Dickinson, M. H. 2001 Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature 412 (6848), 729733.CrossRefGoogle Scholar
Dai, H., Luo, H. & Doyle, J. F. 2012 Dynamic pitching of an elastic rectangular wing in hovering motion. J. Fluid Mech. 693, 473499.CrossRefGoogle Scholar
Dickinson, M. H. 1999 Wing rotation and the aerodynamic basis of insect flight. Science 284 (5422), 19541960.CrossRefGoogle ScholarPubMed
Dickinson, M. H. & Götz, K. G. 1993 Unsteady aerodynamic performance of model wings at low Reynolds numbers. J. Exp. Biol. 64, 4564.CrossRefGoogle Scholar
Eldredge, J. D., Toomey, J. & Medina, A. 2010 On the roles of chord-wise flexibility in a flapping wing with hovering kinematics. J. Fluid Mech. 659, 94115.CrossRefGoogle Scholar
Ellington, C. P. 1984 The aerodynamics of hovering insect flight. V. Vortex theory. Phil. Trans. R. Soc. Lond. B 305 (1122), 115144.Google Scholar
Ellington, C. P. 1996 Leading edge vortices in insect flight. Nature 384, 626630.CrossRefGoogle Scholar
Ishihara, D., Horie, T. & Denda, M. 2009a A two-dimensional computational study on the fluid–structure interaction cause of wing pitch changes in dipteran flapping flight. J. Exp. Biol. 212 (Pt 1), 110.CrossRefGoogle Scholar
Ishihara, D., Yamashita, Y., Horie, T., Yoshida, S. & Niho, T. 2009b Passive maintenance of high angle of attack and its lift generation during flapping translation in crane fly wing. J. Exp. Biol. 212 (Pt 23), 38823891.CrossRefGoogle ScholarPubMed
Khan, Z., Steelman, K. & Agrawal, S. 2009 Development of insect thorax based flapping mechanism. IEEE. Intl Conf. Robot. 36513656.Google Scholar
Kim, D. & Gharib, M. D. 2011 Flexibility effects on vortex formation of translating plates. J. Fluid Mech. 677, 255271.CrossRefGoogle Scholar
Liu, H., Ellington, C. P. & Kawachi, K. C 1998 A computational fluid dynamic study of hawkmoth hovering. J. Exp. Biol. 201, 461477.CrossRefGoogle ScholarPubMed
Milano, M. & Gharib, M. 2005 Uncovering the physics of flapping flat plates with artificial evolution. J. Fluid Mech. 534, 403409.CrossRefGoogle Scholar
Milano, M. & Koumoutsakos, P. 2002 A clustering genetic algorithm for cylinder drag optimization. J. Comput. Phys. 175 (1), 79107.CrossRefGoogle Scholar
Ogata, K. 2002 Modern Control Engineering, 4th edn. Pearson Education.Google Scholar
Ramamurti, R. & Sandberg, W. C. 2002 A three-dimensional computational study of the aerodynamic mechanisms of insect flight. J. Exp. Biol. 205 (10), 150715018.CrossRefGoogle ScholarPubMed
Ramananarivo, S., Godoy-Diana, R. & Thiria, B. 2011 Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance. Proc. Natl Acad. Sci. USA 108 (15), 59645969.CrossRefGoogle ScholarPubMed
Tanaka, H., Whitney, J. P. & Wood, R. J. 2011 Effect of flexural and torsional wing flexibility on lift generation in hoverfly flight. Integr. Comput. Biol. 51 (1), 142150.CrossRefGoogle ScholarPubMed
Vanella, M., Fitzgerald, T., Preidikman, S., Balaras, E. & Balachandran, B. 2009 Influence of flexibility on the aerodynamic performance of a hovering wing. J. Exp. Biol. 212 (1), 95105.CrossRefGoogle ScholarPubMed
Wang, Z. J. 2005 Dissecting insect flight. Annu. Rev. Fluid Mech. 37, 183210.CrossRefGoogle Scholar
Zhang, J., Liu, N.-S. & Lu, X.-Y. 2010 Locomotion of a passively flapping flat plate. J. Fluid Mech. 659, 4368.CrossRefGoogle Scholar