Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-28T18:08:53.063Z Has data issue: false hasContentIssue false

Instability of a viscous liquid coating a cylindrical fibre

Published online by Cambridge University Press:  22 March 2010

ALEJANDRO G. GONZÁLEZ*
Affiliation:
Instituto de Física Arroyo Seco, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, Tandil, Argentina
JAVIER A. DIEZ
Affiliation:
Instituto de Física Arroyo Seco, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, Tandil, Argentina
ROBERTO GRATTON
Affiliation:
Instituto de Física Arroyo Seco, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, Tandil, Argentina
DIEGO M. CAMPANA
Affiliation:
INTEC-CONICET, Universidad Nacional del Litoral, Güemes 3450, Santa Fe, Argentina Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Ruta 11 (Km. 10), Oro Verde, Entre Rríos, Argentina
FERNANDO A. SAITA
Affiliation:
INTEC-CONICET, Universidad Nacional del Litoral, Güemes 3450, Santa Fe, Argentina
*
Email address for correspondence: aggonzal@exa.unicen.edu.ar

Abstract

The instability of a liquid layer coating the surface of a thin cylindrical wire is studied experimentally and numerically with negligible gravity effects. The initial uniform film is obtained as the residual of a sliding drop, and the thickness measurements are performed with an anamorphic optical system that compresses the vertical scale (allowing to observe several wavelengths) and widens the horizontal one (to follow in detail the evolution of local minima and maxima). Experimental timelines showing the growth and position of the maxima and minima are compared with linear theory and fully nonlinear simulations. A primary mode grows in the early stages of the instability, and its wavelength λ1 is not always in agreement with that corresponding to the maximum growth rate predicted by the linear theory λm. In later stages, a secondary mode appears, whose wavelength is half that of the primary mode. The behaviour of the secondary mode allows us to classify the experimental results into two cases, depending on whether it is linearly stable (case I) or unstable (case II). In case I, the amplitude of the secondary mode remains small compared with that of the primary one, while in case II both amplitudes may become very similar at the end. Thus, the distance between the final drops may be quite different from that seen between initial protuberances. The analysis of the experiments allows us to define a simple criterion based on the comparison between λ1 and λm. Contrary to the predictions of widely used previous quasi-static theories, experiments show that the relation between maximum and minimum of the primary mode is better approximated by a kinematic model based on the assumption that primary maxima increase as fast as the minima decrease. Numerical simulations confirm this hypothesis.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

de Bruyn, J. R. 1997 Crossover between surface tension and gravity-driven instabilities of a thin fluid layer on a horizontal cylinder. Phys. Fluids 9 (6), 15991605.CrossRefGoogle Scholar
Campana, D. M., Di Paolo, J. & Saita, F. A. 2004 A 2-D model of Rayleigh instability in capillary tubes: surfactant effects. Intl J. Multiphase Flow 30 (5), 431454.CrossRefGoogle Scholar
Carroll, B. J. & Lucassen, J. 1974 Effect of surface dynamics on the process of droplet formation from supported and free liquid cylinders. Chem. Soc. Faraday Trans. 70, 12281239.CrossRefGoogle Scholar
Collicott, S. H., Zhang, S. & Schneider, S. P. 1994 Quantitative liquid jet instability measurement system using asymmetric magnification and digital image processing. Exp. Fluids 16, 345348.CrossRefGoogle Scholar
Craster, R. V. & Matar, O. K. 2006 On viscous beads flowing down a vertical fibre. J. Fluid Mech. 553, 85105.CrossRefGoogle Scholar
Demmel, J. W., Eisenstat, S. C., Gilbert, J. R., Li, X. S. & Liu, J. W. H. 1999 A supernodal approach to sparse partial pivoting. SIAM J. Matrix Anal. Appl. 20 (3), 720755.CrossRefGoogle Scholar
Duprat, C., Ruyer-Quil, C., Kalliadasis, S. & Giorgiutti-Dauphine, F. 2007 Absolute and convective instabilities of a viscous film flowing down a vertical fiber. Phys. Rev. Lett. 98, 244502.CrossRefGoogle Scholar
Frenkel, A. L., Babchin, A. J., Levich, B. G., Shlang, T. & Sivashinsky, G. I. 1987 Annular flows can keep unstable film from breakup: nonlinear saturation of capillary instability. J. Colloid Interface Sci. 115, 225233.CrossRefGoogle Scholar
Gauglitz, P. A. & Radke, C. J. 1988 An extended evolution equation for liquid film breakup in cylindrical capillaries. Chem. Engng Sci. 43, 14571465.CrossRefGoogle Scholar
de Gennes, P. G., Brochart-Wyart, F. & Quéré, D. 2004 Capillarity and Wetting Phenomena. Springer.CrossRefGoogle Scholar
Goldsmith, H. L. & Mason, S. G. 1963 The flow of suspensions through tubes. II. Single large tubes. J. Colloid Sci. 18, 237261.CrossRefGoogle Scholar
Goren, S. 1962 The instability of an annular thread of fluid. J. Fluid Mech. 12, 309319.CrossRefGoogle Scholar
Goren, S. 1964 The shape of a thread of liquid undergoing breakup. J. Colloid Science 19, 8186.CrossRefGoogle Scholar
Goucher, F. S. & Ward, H. 1922 The thickness of liquid films formed on solid surfaces under dynamic conditions. Phil. Mag. 44, 10021014.Google Scholar
Gresho, P. M., Lee, R. L. & Sani, R. L. 1980 On the time-dependent solution of Navier–Stokes equation in two and three dimensions. In Recent Advances in Numerical Methods in Fluids, vol. 1, pp. 2779. Pineridge Press.Google Scholar
Hammond, P. S. 1983 Nonlinear adjustment of a thin annular film of viscous fluid surrounding a thread of another within a circular cylindrical pipe. J. Fluid Mech. 137, 363.CrossRefGoogle Scholar
Kalliadasis, S. & Chang, H.-C. 1994 Drop formation during coating of vertical fibres. J. Fluid Mech. 261, 135168.CrossRefGoogle Scholar
Kapitza, F. S. & Kapitza, S. P. 1964 Experimental study of undulatory flow conditions (1949). In Collected Papers of P. L. Kapitza, pp. 690709. Macmillan.Google Scholar
Khesghi, H. & Scriven, L. E. 1984 Penalty finite element analysis of unsteady free surface flows. Finite Elements Fluids 5, 393434.Google Scholar
Kistler, S. F. & Scriven, L. E. 1982 Coating Flow Computations. Applied Science Publishers.Google Scholar
Kliakhandler, I. L., Davis, S. H. & Bankoff, S. G. 2001 Viscous beads on vertical fibre. J. Fluid. Mech. 429, 381390.CrossRefGoogle Scholar
Krantz, W. B. & Zollars, R. L. 1976 The linear hydrodynamic stability of film flow down a vertical cylinder. AIChE J. 22, 930938.CrossRefGoogle Scholar
Lin, S. P. & Liu, W. C. 1975 Instability of film coating of wires and tubes. AIChE J. 21 (4), 775782.CrossRefGoogle Scholar
Lister, J. R., Rallison, J. M., King, A. A., Cumming, S. L. J. & Jensen, O. E. 2006 Capillary drainage of an annular film: the dynamics of collars and lobes. J. Fluid Mech. 552, 311343.CrossRefGoogle Scholar
Mashayek, F. & Ashgriz, N. 1995 Instability of liquid coatings on cylindrical surfaces. Phys. Fluids 7 (9), 21432153.CrossRefGoogle Scholar
Plateau, J. 1873 Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires. Gauthier-Villars.Google Scholar
Quéré, D. 1990 Thin films flowing on vertical fibres. Europhys. Lett. 13 (8), 721726.CrossRefGoogle Scholar
Quéré, D. 1999 Fluid coating on a fibre. Annu. Rev. Fluid Mech. 31, 347384.CrossRefGoogle Scholar
Rayleigh, Lord 1879 On the capillary phenomena in jets. Appendix I. Proc. R. Soc. 29 (A), 71.Google Scholar
Rayleigh, Lord 1892 On the instability of a cylinder of viscous liquid under capillary force. Phil. Mag. 34, 145.CrossRefGoogle Scholar
Smolka, L. B., North, J. & Guerra, B. K. 2008 Dynamics of free surface perturbations along an annular viscous film. Phys. Rev. E 77, 036301.CrossRefGoogle ScholarPubMed
Solorio, F. J. & Sen, M. 1987 Linear stability of a cylindrical falling film. J. Fluid Mech. 183, 365377.CrossRefGoogle Scholar
Trifonov, Y. Y. 1992 Steady-state travelling waves on the surface of a viscous liquid film falling down on vertical wires and tubes. AIChe J. 38 (6), 821834.CrossRefGoogle Scholar
Weinstein, S. J. & Ruschak, K. J. 2004 Coating flows. Annu. Rev. Fluid Mech. 36, 2953.CrossRefGoogle Scholar
Yarin, A. L., Oron, A. & Roseneau, P. 1993 Capillary instability of a thin liquid film on a cylinder. Phys. Fluid A 5 (1), 9198.CrossRefGoogle Scholar