Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-28T20:25:22.732Z Has data issue: false hasContentIssue false

Can native Japanese listeners learn to differentiate /r–l/ on the basis of F3 onset frequency?*

Published online by Cambridge University Press:  29 November 2011

ERIN M. INGVALSON*
Affiliation:
Carnegie Mellon University
LORI L. HOLT
Affiliation:
Carnegie Mellon University
JAMES L. McCLELLAND
Affiliation:
Stanford University
*
Address for correspondence: Erin Ingvalson, Department of Communication Sciences and Disorders, Northwestern University, 2240 Campus Dr., Evanston, IL 60208, USAingvalson@northwestern.edu

Abstract

Many attempts have been made to teach native Japanese listeners to perceptually differentiate English /r–l/ (e.g. rock–lock). Though improvement is evident, in no case is final performance native English-like. We focused our training on the third formant onset frequency, shown to be the most reliable indicator of /r–l/ category membership. We first presented listeners with instances of synthetic /r–l/ stimuli varying only in F3 onset frequency, in a forced-choice identification training task with feedback. Evidence of learning was limited. The second experiment utilized an adaptive paradigm beginning with non-speech stimuli consisting only of /r/ and /l/ F3 frequency trajectories progressing to synthetic speech instances of /ra–la/; half of the trainees received feedback. Improvement was shown by some listeners, suggesting some enhancement of /r–l/ identification is possible following training with only F3 onset frequency. However, only a subset of these listeners showed signs of generalization of the training effect beyond the trained synthetic context.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

We wish to thank Daniel Dickison for serving as translator and interpreter and Robert Kass for numerous statistical consultations, particularly the suggestion of Fisher's combined probability test. We also wish to thank several anonymous reviewers for their helpful comments. Portions of this work were presented at the 2003 meeting of the Psychonomic Society and the 2005 meeting of the Cognitive Science Society. This work was supported by NIH grant 3R01-DC004674-06S1, NSF grant BCS-0746067, and a grant from The Bank of Sweden Tercentenary Foundation to the second author and NIMH grant P50-MH64445 to the third author.

References

Agresti, A. (1992). A survey of exact inference for contingency tables. Statistical Science, 7, 131153.Google Scholar
Aoyama, K., Flege, J. E., Guion, S. G., Akahane-Yamada, R., & Yamada, T. (2004). Perceived phonetic dissimilarity and L2 speech learning: The case of Japanese /r/ and English /l/ and /r/. Journal of Phonetics, 32, 233250.CrossRefGoogle Scholar
Bradlow, A. R., Akahane-Yamada, R., Pisoni, D. B., & Tohkura, Y. (1999). Training Japanese listeners to identify English /r/ and /l/: Long-term retention of learning in perception and production. Perception and Psychophysics, 61, 977985.CrossRefGoogle Scholar
Bradlow, A. R., Pisoni, D. B., Akahane-Yamada, R., & Tohkura, Y. (1997). Training Japanese listeners to identify English /r/ and /l/: IV. Some effects of perceptual learning on speech production. Journal of the Acoustical Society of America, 101, 22992310.CrossRefGoogle Scholar
Cutting, J. E., & Rosner, B. S. (1976). Discrimination functions predicted from categories of speech and music. Perception & Psychophysics, 20, 8788.CrossRefGoogle Scholar
Espy-Wilson, C. Y. (1992). Acoustic measures for linguistic features distinguishing the semivowels /wjrl/ in American English. Journal of the Acoustical Society of America, 92 (2), 736757.CrossRefGoogle Scholar
Flege, J. E. (2002). Interactions between the native and second-language phonetic systems. In Burmeister, P., Piske, T. & Rhode, A. (eds.), An integrated view of language development: Papers in honor of Henning Wode, pp. 217244. Trier: Wissenschaftlicher Verlag Trier.Google Scholar
Flege, J. E. (2003). Assessing constraints on second language segmental production and perception. In Schiller, N. O. & Meyer, A. (eds.), Phonetics and phonology in language comprehension and production, differences and similarities, pp. 319355. Berlin: Mouton de Gruyter.CrossRefGoogle Scholar
Flege, J. E., Takagi, N., & Mann, V. (1996). Lexical familiarity and English-language experience affect Japanese adults’ perception of /r/ and /l/. Journal of the Acoustical Society of America, 99, 11611173.CrossRefGoogle Scholar
Golestani, N., Molko, N., Sehaene, S., LeBihan, D., & Pallier, C. (2007). Brain structure predicts the learning of foreign speech sounds. Cerebral Cortex, 17, 575582.CrossRefGoogle ScholarPubMed
Gordon, P. C., Keyes, L., & Yung, Y.-F. (2001). Ability in perceiving nonnative contrasts: Performance on natural and synthetic speech stimuli. Perception & Psychophysics, 63, 746758.CrossRefGoogle ScholarPubMed
Guion, S. G., Flege, J. E., Akahane-Yamada, R., & Pruitt, J. C. (2000). An investigation of current models of second language speech perception: The case of Japanese adults’ perception of English consonants. Journal of the Acoustical Society of America, 107, 27112724.CrossRefGoogle ScholarPubMed
Hattori, K., & Iverson, P. (2009). English /r/–/l/ category assimilation by Japanese adults: Individual differences and the link to identification accuracy. Journal of the Acoustical Society of America, 125 (1), 469479.CrossRefGoogle Scholar
Holt, L. L. (2005). Temporally non-adjacent non-linguistic sounds affect speech categorization. Psychological Science, 16, 305312.CrossRefGoogle Scholar
Holt, L. L., & Lotto, A. J. (2006). Cue weighting in auditory categorization: Implications for first and second language acquisition. Journal of the Acoustical Society of America, 119, 30593071.CrossRefGoogle ScholarPubMed
Holt, L. L., & Wade, T. (2004). Non-linguistic sentence-length precursors affect speech perception: Implications for speaker and rate normalization. In Slifka et al., pp. C49–C54.Google Scholar
Ingvalson, E. M., McClelland, J. L., & Holt, L. L. (2011). Predicting native English-like performance by native Japanese speakers. Journal of Phonetics, 39, 571584.CrossRefGoogle ScholarPubMed
Ingvalson, E. M., & Wenger, M. J. (2005). A strong test of the dual mode hypothesis. Perception & Psychophysics, 67, 1435.CrossRefGoogle Scholar
Iverson, P., Ekanayake, D., Hamann, S., Sennema, A., & Evans, B. G. (2008). Category and perceptual interference in second-language phoneme learning: An examination of English /w/–/v/ learning by Sinhala, German, and Dutch speakers. Journal of Experimental Psychology: Human Perception and Performance, 34, 13051316.Google Scholar
Iverson, P., Hazan, V., & Bannister, K. (2005). Phonetic training with acoustic cue manipulations: A comparison of methods for teaching English /r–l/ to Japanese adults. Journal of the Acoustical Society of America, 118, 32673278.CrossRefGoogle Scholar
Iverson, P., Kuhl, P. K., Akahane-Yamada, R., Diesch, E., Tohkura, Y., Kettermann, A., & Siebert, C. (2003). A perceptual interference account of acquisition difficulties for non-native phonemes. Cognition, 87, B47B57.CrossRefGoogle ScholarPubMed
Jamieson, D. G., & Morosan, D. E. (1986). Training non-native speech contrasts in adults: Acquisition of the English /ð/–/θ/ contrast by francophones. Perception & Psychophysics, 40, 205215.CrossRefGoogle Scholar
Jenkins, J. J., Strange, W., & Polka, L. (1995). Not everyone can tell a “rock” from a “lock”: Assessing individual differences in speech perception. In Lubinski, D. & Dawis, R. V. (eds.), Assessing individual differences in human behavior: New concepts, methods, and findings, pp. 297325. Palo Alto, CA: Davies-Black.Google Scholar
Johnson, J. S., & Newport, E. L. (1989). Critical period effects in second language learning: The influence of maturational state on the acquisition of English as a second language. Cognitive Psychology, 21, 6099.CrossRefGoogle ScholarPubMed
Klatt, D. H. (1980). Software for a cascade-parallel formant synthesizer. Journal of the Acoustical Society of America, 67, 971995.CrossRefGoogle Scholar
Klatt, D. H., & Klatt, L. C. (1990). Analysis, synthesis, and perception of voice quality variations among female and male talkers. Journal of the Acoustical Society of America, 87, 820857.CrossRefGoogle ScholarPubMed
Kluender, K. R., Lotto, A. J., & Holt, L. L. (2005). Contributions of nonhuman animal models to understanding human speech perception. In Greenberg, S. & Ainsworth, W. (eds.), Listening to speech: An auditory perspective, pp. 203220. New York: Oxford University Press.Google Scholar
Knudsen, E. I. (2004). Sensitive periods in the development of brain and behavior. Journal of Cognitive Neuroscience, 16, 14121425.CrossRefGoogle ScholarPubMed
Knudsen, E. I., & Knudsen, P. F. (1990). Sensitive and critical periods for visual localization of sound calibration by barn owls. Journal of Neuroscience, 10, 222232.CrossRefGoogle ScholarPubMed
Kuhl, P. K. (1991). Human adults and human infants show a ‘perceptual magnet effect’ for the prototypes of speech categories, monkeys do not. Perceptual Psychophysics, 50, 93107.CrossRefGoogle ScholarPubMed
Kuhl, P. K. (1993). Innate predispositions and the effects of experience in speech perception: The native language magnet theory. In deBoysson-Bardies, B., de Schonen, S., Jusczyk, P., McNeilage, P. & Morton, J. (eds.), Developmental neurocognition: Speech and face processing in the first year of life, pp. 259274. Dordrecht: Kluwer.CrossRefGoogle Scholar
Kuhl, P. K., & Miller, J. D. (1975). Speech perception by the chinchilla: Voiced–voiceless distinction in alveolar plosive consonants. Science, 190, 6972.CrossRefGoogle ScholarPubMed
Kuhl, P. K., & Padden, D. M. (1982). Enhanced discriminability at the phonetic boundaries for the voicing feature in macaques. Perception & Psychophysics, 32, 542550.CrossRefGoogle ScholarPubMed
Kuhl, P. K., & Padden, D. M. (1983). Enhanced discriminability at the phonetic boundaries for the place feature in macaques. Journal of the Acoustical Society of America, 73, 10031010.CrossRefGoogle ScholarPubMed
Kuhl, P. K., Williams, K. A., Lacerda, F., Stevens, K. N., & Lindblom, B. (1992). Linguistic experience alters phonetic perception in infants by 6 months of age. Science, 255, 606608.CrossRefGoogle Scholar
Lenneberg, E. H. (1967). Biological foundations of language. New York: John Wiley & Sons.CrossRefGoogle Scholar
Liberman, A. M., Harris, K. S., Hoffman, H. S., & Griffith, B. C. (1957). The discrimination of speech sounds within and across phoneme boundaries. Journal of Experimental Psychology, 54, 358368.CrossRefGoogle ScholarPubMed
Lively, S. E., Logan, J. S., & Pisoni, D. B. (1993). Training Japanese listeners to identify English /r/ and /l/ II: The role of phonetic environment and talker variability in learning new perceptual categories. Journal of the Acoustical Society of America, 94, 12421255.CrossRefGoogle Scholar
Lively, S. E., Pisoni, D. B., Yamada, R. A., Tohkura, Y., & Yamada, T. (1994). Training Japanese listeners to identify English /r/ and /l/: III. Long-term retention of new phonetic categories. Journal of the Acoustical Society of America, 96, 20762087.CrossRefGoogle Scholar
Logan, J. S., Lively, S. E., & Pisoni, D. B. (1991). Training Japanese listeners to identify English /r/ and /l/: A first report. Journal of the Acoustical Society of America, 89, 874885.CrossRefGoogle Scholar
Lotto, A. J., Holt, L. L., & Kluender, K. R. (1997). Effect of voice quality on perceived height of English vowels. Phonetica, 54, 7693.CrossRefGoogle ScholarPubMed
Lotto, A. J., Kluender, K. R., & Holt, L. L. (1997a). Animal models of speech perception phenomena. In Singer, K., Eggert, R., & Anderson, G. (eds.), Chicago Linguistic Society (vol. 33), pp. 357367. Chicago: Chicago Linguistic Society.Google Scholar
Lotto, A. J., Kluender, K. R., & Holt, L. L., (1997b). Perceptual compensation for coarticulation by Japanese quail (Coturnix cotrunix japonica). Journal of the Acoustical Society of America, 102, 11341140.CrossRefGoogle Scholar
Lotto, A. J., Sato, M., & Diehl, R. L. (2004). Mapping the task for the second language learner: Case of Japanese acquisition of /r/ and /l/. In Slifka, et al. (eds.), pp. C181–C186.Google Scholar
MacKain, K. S., Best, C. T., & Strange, W. (1982). Categorical perception of English /r/ and /l/ by Japanese bilinguals. Applied Psycholinguistics, 2, 369390.CrossRefGoogle Scholar
Maddox, W. T., Diehl, R. L., & Molis, M. R. (2001). Generalizing a neuropsychological model of visual categorization to auditory categorization of vowels. In Smits, R., Kingston, J., Nearey, T. M. & Zondervan, R. (eds.), Proceedings of the Workshop on Speech Recognition as Pattern Recognition, pp. 8590. Nijmegen: MPI for Psycholinguistics.Google Scholar
Mann, V. A. (1986). Distinguishing universal and language-dependent levels of speech perception: Evidence from Japanese listeners’ perception of English “l” and “r”. Cognition, 24, 169196.CrossRefGoogle ScholarPubMed
McCandliss, B. D., Fiez, J. A., Protopapas, A., Conway, M., & McClelland, J. L. (2002). Success and failure in teaching the [r]–[l] contrast to Japanese adults: Predictions of a Hebbian model of plasticity and stabilization in spoken language perception. Cognitive, Affective and Behavioral Neuroscience, 2, 89108.CrossRefGoogle Scholar
Mirman, D., Holt, L. L., & McClelland, J. M. (2004). Categorization and discrimination of non-speech sounds: Differences between steady-state and rapidly-changing acoustic cues. Journal of the Acoustical Society of America, 116, 11981207.CrossRefGoogle Scholar
Miyawaki, K., Strange, W., Verbrugge, R., Liberman, A. L., Jenkins, J. J., & Fujimura, O. (1975). An effect of linguistic experience: The discrimination of [r] and [l] by native speakers of Japanese and English. Attention, Perception, & Psychophysics, 18, 331340.CrossRefGoogle Scholar
O'Connor, J. D., Gerstman, L. J., Liberman, A. M., Delattre, P. C., & Cooper, F. S. (1957). Acoustic cues for the perception of initial /w, j, r, l/ in English. Word, 13, 2443.CrossRefGoogle Scholar
Orr, D. B., & Friedman, H. L. (1968). Effect of massed practice on the comprehension of time-compressed speech. Journal of Educational Psychology, 59, 611.CrossRefGoogle ScholarPubMed
Polka, L., & Strange, W. (1985). Perceptual equivalence of acoustic cues that differentiate /r/ and /l/. Journal of the Acoustical Society of America, 78 (4), 11871197.CrossRefGoogle ScholarPubMed
Raizada, R. D. S., Tsao, F. M., Liu, H. M., & Kuhl, P. K. (2009). Quantifying the adequacy of neural representations for a cross-language phonetic discrimination task: Prediction of individual differences. Cerebral Cortex, 20 (1), 112.CrossRefGoogle Scholar
Romaine, S. (2003). Variation. In Doughty, C. J. & Long, M. H. (eds.), The handbook of second language acquisition, pp. 409435. Oxford: Blackwell.Google Scholar
Slifka, J., Manuel, S., & Matthies, M. (eds.) (2004). Proceedings of From Sound to Sense: Fifty+ Years of Discoveries in Speech Communication. Cambridge, MA: MIT Press.Google Scholar
Stephens, J. D. W., & Holt, L. L. (2003). Preceding phonetic context affects perception of nonspeech. Journal of the Acoustical Society of America, 114, 30363039.CrossRefGoogle ScholarPubMed
Strange, W., & Dittman, S. (1984). Effects of discrimination training on the perception of /r–l/ by Japanese adults learning English. Perception & Psychophysics, 36, 131145.CrossRefGoogle ScholarPubMed
Takagi, N. (2002). The limits of training Japanese listeners to identify English /r/ and /l/: Eight case studies. Journal of the Acoustical Society of America, 111, 28872894.CrossRefGoogle Scholar
Takagi, N., & Mann, V. (1995). The limits of extended naturalistic exposure on the perceptual mastery of English /r/ and /l/ by adult Japanese learners of English. Applied Psycholinguistics, 16, 379405.CrossRefGoogle Scholar
Underbakke, M., Polka, L., Gottfried, T. L., & Strange, W. (1988). Trading relations in the perception of /r/–/l/ by Japanese learners of English. Journal of the Acoustical Society of America, 84 (1), 90100.CrossRefGoogle ScholarPubMed
Vouloumanos, A., Kiehl, K. A., Werker, J. F., & Liddle, P. F. (2001). Detection of sounds in the auditory stream: Event-related fMRI evidence for differential activation to speech and nonspeech. Journal of Cognitive Neuroscience, 13 (7), 9941005.CrossRefGoogle ScholarPubMed
Werker, J. F., & Tees, R. C. (1984). Cross-language speech perception: Evidence for perceptual reorganization during the first year of life. Infant Behavior and Development, 7, 4963.CrossRefGoogle Scholar
Wong, P. C. M., Perrachione, T. K., & Parrish, T. B. (2007). Characteristics of successful and less successful speech and word learning in adults. Human Brain Mapping, 28, 9951006.CrossRefGoogle ScholarPubMed
Wong, P. C. M., Warrier, C. M., Penhune, V. B., Roy, A. K., Sadehh, A., Parrish, T. B., & Zatorre, R. J. (2008). Volume of left Heschl's gyrus and linguistic pitch learning. Cerebral Cortex, 18, 828836.CrossRefGoogle ScholarPubMed
Yamada, R. A., & Tohkura, Y. (1990). Perception and production of syllable-initial English /r/ and /l/ by native speakers of Japanese. Proceedings of the 1990 International Conference on Spoken Language Processing, pp. 757760. Kobe, Japan.Google Scholar
Zhang, Y., Kuhl, P. K., Imada, T., Iverson, P., Pruitt, J., Stevens, E. B., Kawakatsu, M., Tohkura, Y., & Nemoto, I. (2009). Neural signatures of phonetic learning in adulthood: A magnetoencephalography study. NeuroImage, 46, 226240.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Ingvalson Supplementary Material

Ingvalson Supplementary Material

Download Ingvalson Supplementary Material(PDF)
PDF 1.2 MB