Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-27T15:37:11.330Z Has data issue: false hasContentIssue false

Strengthening emotion-cognition integration

Published online by Cambridge University Press:  08 June 2015

Rebecca Todd
Affiliation:
Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada. becket.todd@ubc.psych.cahttp://psych.ubc.ca/persons/rebecca-todd/
Evan Thompson
Affiliation:
Department of Philosophy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada. evan.thompson@ubc.cahttp://philosophy.ubc.ca/persons/evan-thompson/

Abstract

Pessoa's (2013) integrative model of emotion and cognition can be strengthened in two ways: first, by clarification and refinement of key concepts and terminology, and second by the incorporation of an additional key neural system into the model, the locus coeruleus/norepinephrine system.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, A. K. (2005) Affective influences on the attentional dynamics supporting awareness. Journal of Experimental Psychology: General 134(2):258–81. doi: 10.1037/0096-3445.134.2.258.CrossRefGoogle ScholarPubMed
Anderson, A. K. & Phelps, E. A. (2001) Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature 411(6835):305309. doi: 10.1038/3507708335077083 [pii].CrossRefGoogle ScholarPubMed
Aston-Jones, G. & Bloom, F. E. (1981) Norepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. Journal of Neuroscience 1(8):887900.Google Scholar
Aston-Jones, G. & Cohen, J. D. (2005) An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience 28:403–50. doi: 10.1146/annurev.neuro.28.061604.135709.Google Scholar
Berridge, C. W. & Waterhouse, B. D. (2003) The locus coeruleus-noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Research Reviews 42(1):3384.CrossRefGoogle ScholarPubMed
Cahill, L., Gorski, L. & Le, K. (2003) Enhanced human memory consolidation with post-learning stress: Interaction with the degree of arousal at encoding. Learning & Memory 10(4):270–74. doi: 10.1101/lm.6240310/4/270 [pii].Google Scholar
Cahill, L., Haier, R. J., Fallon, J., Alkire, M. T., Tang, C., Keator, D. & McGaugh, J. L. (1996) Amygdala activity at encoding correlated with long-term, free recall of emotional information. Proceedings of the National Academy of Sciences of the United States of America 93(15):8016–21.Google Scholar
Chikazoe, J., Lee, D. H., Kriegeskorte, N. & Anderson, A. K. (2014) Population coding of affect across stimuli, modalities and individuals. Nature Neuroscience 17(8):1114–22.CrossRefGoogle ScholarPubMed
Clark, A. (2013) Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences 36(3):181204. doi: 10.1017/S0140525X12000477.CrossRefGoogle ScholarPubMed
de Quervain, D. J., Kolassa, I. T., Ertl, V., Onyut, P. L., Neuner, F., Elbert, T. & Papassotiropoulos, A. (2007) A deletion variant of the alpha2b-adrenoceptor is related to emotional memory in Europeans and Africans. Nature Neuroscience 10(9):1137–39. doi: nn1945 [pii] 10.1038/nn1945.Google Scholar
Frijda, N. (1986) The emotions. Cambridge University Press.Google Scholar
Grant, S. J., Aston-Jones, G. & Redmond, D. E. Jr. (1988) Responses of primate locus coeruleus neurons to simple and complex sensory stimuli. Brain Research Bulletin 21(3):401–10.CrossRefGoogle ScholarPubMed
Grossberg, S. & Seidman, D. (2006) Neural dynamics of autistic behaviors: Cognitive, emotional, and timing substrates. Psychological Review 113(3):483525. doi: 10.1037/0033-295X.113.3.483.Google Scholar
Herve-Minvielle, A. & Sara, S. J. (1995) Rapid habituation of auditory responses of locus coeruleus cells in anaesthetized and awake rats. NeuroReport 6(10):1363–68.Google Scholar
Jones, B. E. & Moore, R. Y. (1977) Ascending projections of the locus coeruleus in the rat. II. Autoradiographic study. Brain Research 127(1):2553.Google Scholar
Kahnt, T., Park, S. Q., Haynes, J. D. & Tobler, P. N. (2014) Disentangling neural representations of value and salience in the human brain. Proceedings of the National Academy of Sciences of the United States of America 111(13):50005005. doi: 10.1073/pnas.1320189111.Google Scholar
Manunta, Y. & Edeline, J. M. (2004) Noradrenergic induction of selective plasticity in the frequency tuning of auditory cortex neurons. Journal of Neurophysiology 92(3):1445–63. doi: 10.1152/jn.00079.2004.Google Scholar
Markovic, J., Anderson, A. K. & Todd, R. M. (2014) Tuning to the significant: Neural and genetic processes underlying affective enhancement of visual perception and memory. Behavioural Brain Research 259:229–41. doi: 10.1016/j.bbr.2013.11.018.CrossRefGoogle Scholar
Mather, M. & Sutherland, M. R. (2011) Arousal-biased competition in perception and memory. Perspectives on Psychological Science 6(2):114–33.Google Scholar
Pessoa, L. (2013) The cognitive-emotional brain. From interactions to integration. MIT Press.CrossRefGoogle Scholar
Rasch, B., Spalek, K., Buholzer, S., Luechinger, R., Boesiger, P., Papassotiropoulos, A. & de Quervain, D. J. (2009) A genetic variation of the noradrenergic system is related to differential amygdala activation during encoding of emotional memories. Proceedings of the National Academy of Sciences of the United States of America 106(45):19191–96. doi: 10.1073/pnas.0907425106.Google Scholar
Rasmussen, K. & Jacobs, B. L. (1986) Single unit activity of locus coeruleus neurons in the freely moving cat. II. Conditioning and pharmacologic studies. Brain Research 371(2):335–44.Google Scholar
Roozendaal, B., McEwen, B. S. & Chattarji, S. (2009) Stress, memory and the amygdala. Nature Reviews. Neuroscience 10(6):423–33. doi: 10.1038/nrn2651.CrossRefGoogle ScholarPubMed
Sara, S. J. (2009) The locus coeruleus and noradrenergic modulation of cognition. Nature Reviews Neuroscience 10(3):211–23. doi: 10.1038/nrn2573.CrossRefGoogle ScholarPubMed
Sara, S. J. & Bouret, S. (2012) Orienting and reorienting: The locus coeruleus mediates cognition through arousal. Neuron 76(1):130–41. doi: 10.1016/j.neuron.2012.09.011.Google Scholar
Small, K. M., Brown, K. M., Forbes, S. L. & Liggett, S. B. (2001) Polymorphic deletion of three intracellular acidic residues of the alpha 2B-adrenergic receptor decreases G protein-coupled receptor kinase-mediated phosphorylation and desensitization. Journal of Biological Chemistry 276(7):4917–22. doi: 10.1074/jbc.M008118200.Google Scholar
Summerfield, C. & Egner, T. (2009) Expectation (and attention) in visual cognition. Trends in Cognitive Sciences 13(9):403409. doi: 10.1016/j.tics.2009.06.003.CrossRefGoogle ScholarPubMed
Summerfield, C., Egner, T., Greene, M., Koechlin, E., Mangels, J. & Hirsch, J. (2006) Predictive codes for forthcoming perception in the frontal cortex. Science 314(5803):1311–14. doi: 10.1126/science.1132028.Google Scholar
Todd, R. M., Cunningham, W. A., Anderson, A. K. & Thompson, E. (2012a) Affect-biased attention as emotion regulation. Trends in Cognitive Sciences 16(7):365–72. doi: 10.1016/j.tics.2012.06.003.CrossRefGoogle ScholarPubMed
Todd, R. M., Muller, D. J., Lee, D. H., Robertson, A., Eaton, T., Freeman, N., Palombo, D. J., Levine, B. & Anderson, A. K. (2013) Genes for emotion-enhanced remembering are linked to enhanced perceiving. Psychological Science 24(11):2244–53. doi: 10.1177/0956797613492423.Google Scholar
Todd, R. M., Muller, D. J., Palombo, D. J., Robertson, A., Eaton, T., Freeman, N. & Anderson, A. K. (2014) Deletion variant in the ADRA2B gene increases coupling between emotional responses at encoding and later retrieval of emotional memories. Neurobiology, Learning & Memory 112:222–29. doi: 10.1016/j.nlm.2013.10.008.Google Scholar
Todd, R. M., Talmi, D., Schmitz, T. W., Susskind, J. & Anderson, A. K. (2012b) Psychophysical and neural evidence for emotion-enhanced perceptual vividness. Journal of Neuroscience 32(33):11201–12. doi: 10.1523/JNEUROSCI.0155-12.2012.Google Scholar
Waterhouse, B. D., Azizi, S. A., Burne, R. A. & Woodward, D. J. (1990) Modulation of rat cortical area 17 neuronal responses to moving visual stimuli during norepinephrine and serotonin microiontophoresis. Brain Research 514(2):276–92.Google Scholar