Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-29T00:54:20.578Z Has data issue: false hasContentIssue false

Speech, vocal production learning, and the comparative method

Published online by Cambridge University Press:  17 December 2014

Bjorn Merker*
Affiliation:
Fjälkestadsv. 410-82, SE-29194, Kristianstad, Sweden. gyr694c@tninet.se

Abstract

The faith that “comparative analysis of the behaviour of modern primates, in conjunction with an accurate phylogenetic tree of relatedness, has the power to chart the early history of human cognitive evolution” (Byrne 2000 p. 543) runs afoul of the fact that no other primate besides humans is capable of vocal production learning. This basic enabling adaptation for articulate speech bears crucially on the reconstruction of language origins.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arriaga, G. & Jarvis, E. D. (2013) Mouse vocal communication system: Are ultrasounds learned or innate? Brain and Language 124(1):96116. doi: 10.1016/j.bandl.2012.10.002.Google Scholar
Byrne, R. W. (2000) Evolution of primate cognition. Cognitive Science 24:543–70.Google Scholar
Falk, D. (2007) Evolution of the primate brain. In: Handbook of palaeoanthropology, vol. 2: Primate evolution and human origins, ed. Henke, W. & Tattersall, I., pp. 1133–62. Springer-Verlag.Google Scholar
Fitch, W. T., Huber, L. & Bugnyar, T. (2010) Social cognition and the evolution of language: Constructing cognitive phylogenies. Neuron 65(6):795814. doi: 10.1016/j.neuron.2010.03.011.Google Scholar
Hockett, C. F. (1960) The origin of speech. Scientific American 203:8996.Google Scholar
Iwatsubo, T., Kuzuhara, S., Kanemitsu, A., Shimada, H. & Toyokura, Y. (1990) Corticofugal projections to the motor nuclei of the brainstem and spinal cord in humans. Neurology 40(2):309–12.Google Scholar
Janik, V. & Slater, P. J. B. (1997) Vocal learning in mammals. In: Advances in the Study of Behavior, vol. 26, ed. Slater, P. J. B., Rosenblatt, J. S., Snowdon, C. T., & Milinski, M., pp. 5999. Academic Press.Google Scholar
Janik, V. M. & Slater, P. J. B. (2000) The different roles of social learning in vocal communication. Animal Behaviour 60:111.Google Scholar
Jürgens, U. (2002a) A study of the central control of vocalization using the squirrel monkey. Medical Engineering and Physics 7–8:473–77.Google Scholar
Kirby, S. (2002) Learning, bottlenecks and the evolution of recursive syntax. In: Linguistic evolution through language acquisition: Formal and computational models, ed. Briscoe, T., pp. 173204. Cambridge University Press.Google Scholar
Kirby, S., Cornish, H. & Smith, K. (2008) Cumulative cultural evolution in the laboratory: An experimental approach to the origins of structure in human language. Proceedings of the National Academy of Sciences USA 105:10681–86. doi: 10.1073#pnas.0707835105.Google Scholar
Kuypers, H. G. J. M. (1958a) Corticobulbar connection to the pons and lower brain-stem in man. Brain 81:364–88.Google Scholar
Kuypers, H. G. J. M. (1958b) Some projections from the peri-central cortex to the pons and lower brain stem in monkey and chimpanzee. Journal of Comparative Neurology 110:221–55.Google Scholar
Merker, B. (2009) Returning language to culture by way of biology. Commentary on Evans & Levinson (2009). Behavioral and Brain Sciences 32:460–61.Google Scholar
Merker, B. (2012) The vocal learning constellation: Imitation, ritual culture, encephalization. In: Music, language and human evolution, ed. Bannan, N., pp. 215–60. Oxford University Press.Google Scholar
Merker, B. & Okanoya, K. (2007) The natural history of human language: Bridging the gaps without magic. In: Emergence of communication and language, ed. Lyon, C., Nehaniv, L. & Cangelosi, A., pp. 403–20. Springer-Verlag.Google Scholar
Neubert, F.-X., Mars, R. B., Thomas, A. G., Sallet, J. & Rushworth, M. F. S. (2014) Comparison of human ventral frontal cortex areas for cognitive control and language with areas in monkey frontal cortex. Neuron 81:114. doi:10.1016/j.neuron.2013.11.012.Google Scholar
Nottebohm, F. (1976) Discussion paper. Vocal tract and brain: A search for evolutionary bottlenecks. In: Origins and evolution of language and speech, ed. Harnad, S. R., Steklis, H. D. & Lancaster, J., pp. 643–49. Annals of the New York Academy of Sciences, vol. 280. New York Academy of Sciences.Google Scholar
Okanoya, K., Hihara, S., Tokimoto, N., Tobari, Y. & Iriki, A. (2007) Complex vocal behaviour and cortical-medullar projection. Lecture Notes in Computer Science 3609:362–67.Google Scholar
Okanoya, K. & Merker, B. (2007) Neural substrates for string-context mutual segmentation: A path to human language. In: Emergence of communication and language, ed. Lyon, C., Nehaniv, L. & Cangelosi, A., pp. 421–34. Springer-Verlag.Google Scholar
Reimers-Kipping, S., Hevers, W., Pääbo, S. & Enard W. (2011) Humanized Foxp2 specifically affects cortico-basal ganglia circuits. Neuroscience 175:7584. doi: 10.1016/j.neuroscience.2010.11.042.Google Scholar
Spencer, K. A. & MacDougall-Shackleton, S. A. (2011) Indicators of development as sexually selected traits: The developmental stress hypothesis in context. Behavioral Ecology 22:19. doi: 10.1093/beheco/arq068.Google Scholar
von Humboldt, W. (1836/1971) Über die Verschiedenheit des Menschlichen Sprachbaues und ihren Einfluss auf die geistige Entwicklung des Menschengeschlechts [Linguistic variability and intellectual development], trans. Buck, G. C. & Raven, F.. Royal Academy of Sciences/University of Miami Press. (Original work published in 1836; English translation from the German by Buck & Raven in 1971).Google Scholar
Wild, J. M. (1993) Descending projections of the songbird nucleus robustus, archistriatalis. Journal of Comparative Neurology 338:225–41.Google Scholar
Wild, J. M. (1997) Neural pathways for the control of birdsong production. Journal of Neurobiology 33:653–70.Google Scholar