Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-20T15:50:35.223Z Has data issue: false hasContentIssue false

Star-cluster formation and evolution

Published online by Cambridge University Press:  01 August 2006

Pavel Kroupa*
Affiliation:
Argelander Institute for Astronomy, University of Bonn, Auf dem Hügel 71, D-53347 Bonn, Germany email: pavel@astro.uni-bonn.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Star clusters are observed to form in a highly compact state and with low star-formation efficiencies, and only 10 per cent of all clusters appear to survive to middle- and old-dynamical age. If the residual gas is expelled on a dynamical time the clusters disrupt. Massive clusters may then feed a hot kinematical stellar component into their host-galaxy's field population thereby thickening galactic disks, a process that theories of galaxy formation and evolution need to accommodate. If the gas-evacuation time-scale depends on cluster mass, then a power-law embedded-cluster mass function may transform within a few dozen Myr to a mass function with a turnover near 105M, thereby possibly explaining this universal empirical feature. Discordant empirical evidence on the mass function of star clusters leads to the insight that the physical processes shaping early cluster evolution remain an issue of cutting-edge research.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Bastian, N. & Goodwin, S. P. 2006, MNRAS 369, L9CrossRefGoogle Scholar
Bastian, N., Gieles, M., Lamers, H. J. G. L. M.Scheepmaker, R. A. & de Grijs, R. 2005, A&A 431, 905Google Scholar
Baumgardt, H. & Makino, J. 2003, MNRAS 340, 227CrossRefGoogle Scholar
Boily, C. M. & Kroupa, P. 2003a, MNRAS 338, 665CrossRefGoogle Scholar
Boily, C. M. & Kroupa, P. 2003b, MNRAS 338, 673CrossRefGoogle Scholar
de Grijs, R., Bastian, N. & Lamers, H. J. G. L. M. 2003, ApJL 583, L17CrossRefGoogle Scholar
de Grijs, R., Parmentier, G. & Lamers, H. J. G. L. M. 2005, MNRAS 364, 1054CrossRefGoogle Scholar
Fall, S. M. & Zhang, Q. 2001, ApJ 561, 751CrossRefGoogle Scholar
Elmegreen, B. G. & Meloy Elmegreen, D. 2006, ApJ 650, 644CrossRefGoogle Scholar
Fall, S. M., Chandar, R. & Whitmore, B. C. 2005, ApJL 631, L133CrossRefGoogle Scholar
Fellhauer, M. & Kroupa, P. 2005, ApJ 630, 879CrossRefGoogle Scholar
Goodwin, S. P. 1997, MNRAS 284, 785CrossRefGoogle Scholar
Hunter, D. A., Elmegreen, B. G., Dupuy, T. J. & Mortonson, M. 2003, AJ 126, 1836CrossRefGoogle Scholar
Jenkins, A. 1992, MNRAS 257, 620CrossRefGoogle Scholar
Kroupa, P. 2002, MNRAS 330, 707CrossRefGoogle Scholar
Kroupa, P. 2005, in: Turon, C.O'Flaherty, K. S. & Perryman, M. A.C. (eds.), The Three-Dimensional Universe with Gaia (ESA SP-576), 629Google Scholar
Kroupa, P. & Boily, C. M. 2002, MNRAS 336, 1188Google Scholar
Kroupa, P., Aarseth, S. J. & Hurley, J. 2001, MNRAS 321, 699CrossRefGoogle Scholar
Lada, C. J. & Lada, E. A. 2003, ARA&A 41, 57Google Scholar
Lamers, H. J. G. L. M., Gieles, M. & Portegies Zwart, S. F. 2005a, A&A 429, 173Google Scholar
Lamers, H. J. G. L. M., Gieles, M., Bastian, N., Baumgardt, H., Kharchenko, N. V. & Portegies Zwart, S. 2005b, A&A 441, 117Google Scholar
Mould, J. 2005, AJ 129, 698Google Scholar
Parmentier, G. & Gilmore, G. 2005, MNRAS 363, 326CrossRefGoogle Scholar
Portegies, Zwart, S. F.McMillan, S. L. W., Hut, P. & Makino, J. 2001, MNRAS 321, 199CrossRefGoogle Scholar
Vesperini, E. 1998, MNRAS 299, 1019CrossRefGoogle Scholar
Vesperini, E. 2001, MNRAS 322, 247CrossRefGoogle Scholar
Weidner, C. & Kroupa, P. 2006, MNRAS 365, 1333CrossRefGoogle Scholar
Weidner, C., Kroupa, P. & Larsen, S. S. 2004, MNRAS 350, 1503Google Scholar
Wuchterl, G. & Tscharnuter, W. M. 2003, A&A 398, 1081Google Scholar
Yoachim, P. & Dalcanton, J. J. 2005, ApJ 624, 701CrossRefGoogle Scholar
Zhang, Q. & Fall, S. M. 1999, ApJL 527, L81Google Scholar