Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T09:13:05.538Z Has data issue: false hasContentIssue false

On the Habitability of Terrestrial Planets in Binary Star Systems

Published online by Cambridge University Press:  29 April 2014

Elke Pilat-Lohinger
Affiliation:
Institute of Astronomy, University of Vienna, Austria
Barbara Funk
Affiliation:
Institute of Astronomy, University of Vienna, Austria
Siegfried Eggl
Affiliation:
IMCCE, Paris email: elke.pilat-lohinger@univie.ac.at.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The growing number of detected planets in binary star systems requires methods for a quick assessment of possible habitability of planets in such environments. We offer an analytic method to determine habitability of a terrestrial planet in binary star systems. In this context we give an answer to the most important question: Do the radiative and gravitational perturbations of a secondary influence the extent of the habitable zone (HZ)?

After we have defined the borders of the HZ, we will show the dynamical behaviour of a terrestrial planet in the HZ when adding a Jupiter to the system. In such a system the HZ shows signs of mean motion resonances and secular resonances, depending on the architecture of the planetary system.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Batygin, K., Morbidelli, A., & Tsiganis, K. 2011, A&A, 533, A7Google Scholar
Dumusque, X.et al. 2012, Nature, 492, 207Google Scholar
Eggl, S., Pilat-Lohinger, E., Georgakarakos, N., Gyergyovits, M., & Funk, B. 2012a, ApJ, 752, 74CrossRefGoogle Scholar
Eggl, S., Pilat-Lohinger, E., Funk, B., Georgakarakos, N., & Haghighipour, N. 2012b MNRAS, 428, 3104Google Scholar
Forgan, D. 2012, MNRAS, 422, 1241Google Scholar
Froeschlé, C., Lega, E., & Gonczi, R. 1997, CMDA, 67, 41Google Scholar
Harrington, R. S. 1977, AJ, 82, 753Google Scholar
Holman, M. J. & Wiegert, P. A. 1999, AJ, 117, 621CrossRefGoogle Scholar
Huang, S. S. 1960, PASP, 72, 106CrossRefGoogle Scholar
Kaltenegger, L., Traub, W. A., & Jucks, K. W. 2007, ApJ, 658, 598CrossRefGoogle Scholar
Kasting, J. F., Whitmire, D. P., & Reynolds, R. T. 1993, Icarus, 101, 108CrossRefGoogle Scholar
Kiseleva-Eggleton, L., & Eggleton, P. P. 2001, in Astronomical Society of the Pacific Conferences Series, 229, Evolution of Binary and Multiple Star Systems, Podsiadlowski et al. (eds.), 91Google Scholar
Lammer, H., Bredehöft, J. H., Coustenis, A.et al. 2009, A&AR, 17, 181Google Scholar
Müller, T. W. A. & Kley, W. 2012, A&A, 539, A18Google Scholar
Paardekooper, S. J. & Leinhardt, Z. M. 2010, MNRAS, 403, L64Google Scholar
Pilat-Lohinger, E. & Dvorak, R. 2002, CMDA, 82, 143CrossRefGoogle Scholar
Pilat-Lohinger, E., Funk, B., & Dvorak, R. 2003, A&A, 400, 1085Google Scholar
Pilat-Lohinger, E. 2005, in “Dynamics of Populations of Planetary Systems”, Proceedings of IAU Coll. 197, eds. Knezevic, Z. and Milani, A., Cambridge University Press, 71Google Scholar
Rabl, G. & Dvorak, R. 1988, A&A, 191, 385Google Scholar
Roell, T., Neuhäuser, R., Seifahrt, A., & Mugrauer, M. 2012, A&A, 542, A92Google Scholar
Selsis, F., Kasting, J. F., Levrard, B., et al. 2007, A&A, 476, 1373Google Scholar
Thébault, P. 2011, CMDA 111 29Google Scholar